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1.1 DESCRIPTION OF SIMPLE HARMONIC MOTION (SHM):
1.1.1 Equation of motion:

Suppose a particle of mass m is undergoing SHM along a line. If x be its displacement at any instant from
the position of stable equilibrium, then restoring force F under small oscillation approximation may be
written as

F = – sx ... (1)

where s is the restoring force per unit displacement, called force constant.
The negative sign indicates that F and x are oppositely directed. For spring restoring force follows Hooke’s
law of elasticity. From Newton’s law, the equation of motion is

2

2

d xm sx
dt

    
2

2
2

d x x 0
dt

  ... (2)

where 2 s / m  .
Equation (2) is the differential equation of motion of a simple harmonic oscillator.
Its general solution is given by the principle of superposition as

j t – j t
1 2x c e c e   ... (3)

    1 2x c cos t jsin t c cos t j sin t       

   A cos t Bsin t    ... (4)

where ,  1 2A c c   and  1 2B j c c  .
Again, introducing two other constants a and   by the relations A = a sin   and B = a cos  , such that

2 2a A B   and tan /A B  , solution (4) can be put in the form,

 sinx a t    ... (5)

Putting 
2


    , the solution (5) can also be expressed as

 cosx a t    ... (6)

1.1.2 Characteristics of SHM:

Let us choose the solution,   cosx a t   

Here ‘a’ represents the maximum value of displacement from the position of stable equilibrium. It is called
the amplitude of SHM.  The time period T is the time interval in which the motion repeats itself and is
given by
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   x t x t T 

      cos cos cosa t a t T a t T               
    cos ( ) 2 cos ( )a t a t T          

For equality we must have,  2T    or, 2 /T    2 m
s

  ... (7)

The quantity   is called the angular frequency. The usual frequency   which gives the number of

oscillations per unit time is given by 
1 1

2
sv

T m
 


... (8)

The quantity  t    in equation (6) is called the phase of motion and   is called the initial phase or
epoch.

Effective acceleration due to gravity (g)
When simple pendulum is kept in inertial frame its time period is given by

2 lT
g

 


T

l

mg
When simple pendulum is kept in non-inertial frame its time period is given by

2 ,lT
g

 


where g  is called effective gravity and is given by
g g a  
   ... (9)

where a  is acceleration of the frame.

Illustration : A simple pendulum, suspended from the ceiling of a stationary cart, has a time period 2 seconds. When
the cart accelerates in the horizontal direction with an acceleration of 10 m/s2, the time period of the pendulum
is (g = 10 m/s–2) [JAM-GP: 2007]
(a) 21/2 seconds (b) 23/2 seconds (c) 21/4 seconds (d) 23/4 seconds

Soln. Forces on bob
1. Gravity downward : mg
2. Tension force : T
3. Psuedo force : – ma
Now, at equilibrium condition, sum of gravitational force and pseudo force will be balanced by tension force.

T

mg

When  = 0a

Mean position
 = 0°

0

a 

mg
mg

ma

Mean position
 =  0

Here     g g a  
 
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    2 2g a g  

3/4
1/4 1/42 2 2 2

2 2

1 1Time period 2 2 2 2 2 2 sec.
2

1 1

l l l l
g gg a a ag

g g

   

 
 
                  

Correct option is (d)

Illustration : If a pendulum bob is suspended by a string of length L inside a fluid (the bob is  times more dense than
the fluid), the period of small oscillations of the pendulum will be given by

(a) 2 L
g


 (b) 2
( 1)





L
g

(c) ( 1)2 L
g





(d) 2 L

g



[H.C.U.-2011]

Soln. Density of bob ; density of liquid (fluid)    b L

Time period 2   T g , where  g effective gravity..

Assuming bob a system        b b b LMg Mg F Vg Vg Vg

1 11 1
                          

L L

b b
g g g g g g



Fb

mg
g

2 2
( 1)1


   
 

  

L LT
gg

Correct option is (b)

Illustration : A simple pendulum executes oscillations of period 10 s on the surface of Earth. This pendulum is taken
to another planet having same mass but one fourth of Earth’s size. The period of oscillations of the pendulum
would now be
(a) 40 s (b) 10 s (c) 5 s (d) 2.5 s [H.C.U.-2014]

Soln. Time period of pendulum on earth

2
LT
g



Acceleration due to gravity on earth

2 ... (1) E

E

GMg
R

Acceleration due to gravity on planet

2 2
4 4 ... (2)

4

   
 
 
 

E E

EE

GM GMg g
RR

102 2 5sec.
4 2 2

     


L L TT
g g

 

Correct option is (c)
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Illustration : A simple pendulum has a bob of mass 1 kg and charge 1 Coulomb. It is suspended by the massless string
of  length 13 m. The time period of small oscillations of this pendulam is 0T . If an electric field ˆ100E x


 V/m

applied, the time period becomes T. What is the value of 4
0( / )T T  ? [JEST 2017]

y

g  10m sec= –2

l  13 m=

m  1 kg
q  1 Columb

=
=

1(100 volt m )E i

Soln. Due to electric field E


, charge q will be pushed in horizontal direction by force

... (1)eF qE
 

Resultant force of eF


 and weight mg  will give direction of effective gravity g . Thus,

mg qE mg  
 

qEg g
m

  


 

2
2 ... (2)qEg g

m
    
 



Time period, in absence of electric field

0 2 LT
g

              

mg

qE

mg

E

Time period, in presence of electric field

2 LT
g




4 24
0T g g

T g g
          

    
2

2
24

0
2 1

qE g
T qEm
T mgg

             
   

Putting values, 21c, 100 V/m, 1 kg, 10 m/sq E m g    , we get
4 2

0 100 1 101
10

T
T

       
  

Correct answer is (101)

Illustration : A tunnel is dug from the surface of the earth through the center and opens at the other end. A ball
is dropped from one end of the tunnel. The acceleration due to gravity on the earth’s surface is g and the
radius of the earth is R. Assuming that the earth has a constant density, the time taken by the ball to reach
the center of the earth is [DU 2017]

(a) R
g

 (b) 2 R
g

 (c)
2

R
g

 (d)
4

R
g


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Soln.

x

                                
x = –A x = A

T/4

Let the mass of the ball is m and is at height x from the center . Gravitational force acting on the ball of mass m,
is due to mass enclosed (M en) in a sphere of radius x.
Mass enclosed within sphere of radius x

3 3
3 3

4 π
4 / 3πR 3

E E
en

M MM V x x
R

       
  



Gravitional force due to earth

2
enGmMF

x


3

3 2
eGmM x

R x
 3

EGM mx kx
R

 

As the force F is opposite of distance x therefore, ball will perform SHM.

3 2

1Time period T 2 2π 2 2
1E E

m m R
GM m GMk g

R R R

     
   
   
   

,

where E
2

GMg ;
R

 acceleration due to gravity..

Time required to reach center (mean position) from the surface (maximum position) is equal to T/4, i.e.

4 2
T Rt

g


 

Correct option is (c)

Illustration : Two springs of force constant k1 and k2 are arranged in a parallel arrangement and a mass ‘m’ is
suspended from it. The arrangement is equivalent to a single spring of constant k given by [DU 2015]

(a) 1 2k k (b) 1 2k k (c) 1 2 1 2/ ( )k k k k (d) 1 2/k k

Soln. If an elongation of x is given to the system, then restoring force

 1 2 1 2       F k x k x k k x kx k1 k2

m
where, 1 2 equivalent spring constant  k k k

Correct option is (b)

Illustration : Find the time period for the arrangement of the spring mass system having constant 1 2andk k .

k1 k2

m

Soln. Let x be the displacement of mass m from its equilibrium position at an instant and 1 2andx x  are the

extension in the springs 1 2andk k  respectively..

1 2x x x  ... (i)
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Tension force at each points in a spring is equal to the external force applied at one of its end,
k1 k2

F
F F1  = F F2  =

i.e., 1 2F F F  ... (ii)

1 1 2 2k x k x k x    

where k   is equivalent spring constant,
From equation (i)

1 2

F F F
k k k
 
   

1 2

1 1 1
k k k

  
 ... (iii)

i.e., if there is same tension force in all connected springs, equivalent spring constant is given by equation
(iii).

Illustration : A solid cylinder of mass m, radius a and height also a and a solid sphere of the same mass and the same
radius are connected to the two ends of a thin rod of mass m/5 and length 4a. The line joining the centres of
mass of the cylinder and the sphere coincides with the axis of the rod. The vertical cross-section of the assem-
bly is shown in the figure below. The whole assembly is suspended vertically by a massless wire passing
through its centre of mass. The torsional constant of the wire is 76 ma2/sec2. Calculate the frequency of the
torsional oscillation about the suspension in the horizontal plane.

cylinder sphere
a a

m/5

4a
m

m

[JAM-GP: 2010]
Soln. Let us calculate the moment of inertia about of cylinder and sphere, and the rod about vertical wire.

Cylinder : 21
2z x yI I I ma   (Perpendicular Axes Theorem)

21
4x yI I ma 

Applying Parallel Axes Theorem,  moment of inertia about vertical wire of :

y y

3a
vertical wire

      

y

x

z

Cylinder : 2 2 2 21 37(3 ) 9
4 4c cmI I m a ma ma ma      .
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Sphere : 2 2 2 22 47.(3 ) 9
5 5s cmI I m a ma ma ma     .

Rod : 2 2 21 1 416
12 12 5 15r

mI ML a ma     .

Moment of inertia of system about the vertical wire,
             I  = sum of moment of inertia of individual bodies about vertical wire

         

2 2 2

2

37 47 4
4 5 15

227
12

ma ma ma

I ma

  



Now, if the rod along with the cylinder and sphere is twisted by an angle of , a restoring torsional torque,
k    acts and tends to brings the system back to its original position.

 k  

 
2

2

dI k
dt


   
2

2 0dI k
dt


  

 
2

2 2
2

227 76 0
12

dma ma
dt


 

 
2

2

912 0
227

d
dt


 

Angular frequency of torsional oscialltion  912 1 1 912 .
227 2 2 227

f 
 

  

1.1.3 Energy in SHM:

Kinetic energy at any instant is given by 
21

2k
dxE m
dt

   
 

  2 2 21 sin
2kE ma t     ... (10)

Total potential energy acquired by the particle for the displacement x is

2

0

1
2

x

pE F dx sx dx sx     

 2 21
2pE m x   2 2 21 m a cos t

2
     ... (11)

Total instantaneous energy, k pE E E 
2 21 m a

2
   = constant ... (12)

and it is equal to the maximum value of the kinetic energy or the potential energy. Thus in SHM energy
oscillates between the kinetic and potential forms but total energy remains constant.
Energy position graph:

K.E  P.E=

E
Total energy

E

Position

K.E

P.E

–A 0 A
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PE : Graph is parabola with vertex at 0x  .
KE : The KE curve is inverted parabola.

Illustration : Find the position in terms of amplitude when kinetic energy is equal to potential energy of a particle is
SHM.

Ans. If sinx A t ... (i)

then cosdxv A t
dt

  

1/22

1 xA
A


     

   
1/22 2A x     ... (ii)

Kinetic energy, 2 2 2 21 1
2 2

KE mv m A x      ... (iii)

Potential energy, 2 2 21 1 ,
2 2

PE kx m x 

when, PE = KE

2 2 2 2 21 1
2 2

m x m A x     

2 22 .
2

Ax A x    

Illustration : Frequency of energy change   from KE to PE in SHM is related with the frequency 0  of SHM by

(a) 02   (b) 0

2


  (c) 2
0   (d) 0  

Soln. Potential energy 2 2
0

1
2

PE m x

If 0sinx A t  then

2 2 2 2 2 0
0 0

1 cos 21 1sin
2 2 2

tPE m A t m A 
  

     

2 2 2 2
0 0 0 0

1 1 cos 2 cos 2
4 4

m A m A t c c t       , 2 2
0

1where constant
4

c m A 

       cos Ec c t 

0frequency of energy change 2 .E  

Force Constant in terms of potential energy:
If ( )U x  is potential energy of the oscillating system in SHM, then at equilibrium point 0x x ,

0

( ) 0
x

U xF
x


  


.

Solving this, we get mean position 0x . The force constant of the oscillating system can be given by
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0

2

2

( )

x

d U xK
dx



x0

x0

Stable equilibrium Unstable equilibrium
U x( )

x
Illustration : A particle of mass ‘m’ is moving in a potential

  2 2
0 2

1 aV x m x
2 2mx

  

where 0  and 'a'  are positive constants. The angular frequency of small oscillations for the simple harmonic
motion of the particle about a stable minimum of the potential V(x) is:

(a) 02 (b) 02 (c) 04 (d) 04 2
[IIT-JAM : 2011]

Soln. (b)   2 2
0 2

1 aV x m x
2 2mx

   ;  2
0 3

V am x
x mx


  


;  

2
2
02 4

V 3am
x mx


  



At minimum potential  0
V 0 at x x
x

  


1/4
2
0 0 03 2 2

0 0

a am x x
mx m

 
      

, equilibrium position

x

V

Force constant, 
2

2
x x0

Vk
x 





= 
2 2 4

2 2 0 0
0 04 4

0 0

3m x3am m
mx mx


      = 2

04m

2
04mk

m m


     02 

1.1.4 Equation of motion from principle of conservation of energy:

Total energy of the oscillator is 
2

21 dx 1m sx E
2 dt 2

    
 

(constant) ... (13)

  
2

2

dx d x dxm . sx 0
dt dt dt

    
2

2

d x dxm sx 0
dt dt

 
  

 
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Since dx/dt cannot be zero for all values of  t, 
2

2

d xm sx 0
dt

  ... (14)

which is the equation of motion.

1. 2 REPRESENTATION OF SHM BY ROTATING VECTOR:

OB


 is a vector of constant magnitude a
which rotates with constant angular ve-
locity   in anticlockwise sense. At time t
= 0 the vector coincides with the line OA
which makes an angle   with x - axis.
The x–component of the rotating vector

is  x a cos t   

Figure 1.1

which represents a SHM. The y-component of the rotating vector is  y a sin t     which also rep-
resents a SHM. From the above treatment it is clear that SHM can be viewed as a projection of circular
motion on any fixed diameter of the circle.

1.3  SUPERPOSITION OF COLLINEAR SHMs:

The principle of superposition according to which resultant displacement due to a number of sources is
given by the algebraic sum of the displacements caused by the individual sources.

1.3.1  SHMs of same frequency acting along the same direction but having different amplitudes and
phases:

Let two SHMs be represented by
 1 1 1x a cos t    ... (15)

 2 2 2x a cos t    ... (16)

where 1a  and 2a  are the amplitudes, 1  and 2  are the initial phase angles of the two SHMs of same
angular frequency  .
By the superposition principle the resultant displacement is given by

1 2x x x     1 1 2 2a cos t a cos t      

        1 1 2 2 1 1 2 2a cos a cos cos t a sin a sin sin t         

Putting 1 1 2 2a cos a cos A cos    

1 1 2 2a sin a sin Asin    

we get  x A cos t    ... (16)
It shows that the resultant motion is also simple harmonic, amplitude of which is given by

 2 2 2
1 2 1 2 1 2A a a 2a a cos –     ... (17)

And
1 1 2 2

1 1 2 2

a sin a sin
tan

a cos a cos
  

 
   ... (18)
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1.3.2 Two SHMs of slightly different frequencies acting along the same direction:
Let us consider two SHMs having slightly different angular frequencies 1 2and . 

1 0 1x A sin t 

2 0 2x A sin t 

1 2 1 2
1 2 0x x x 2A sin t cos t

2 2
                   

Let 1 2 1 2
m Amand

2 2
   

   

x

t

Am

m

tb

0 m Amx 2A sin t cos t  

0 Am mx (2A cos t) sin t  

mx Asin t 

where 0 AmA (2A cos t)  , if 1 2 m~ , 0   

amplitude 0A 2A nearly constant  .

Then the result oscillation is nearly SHM with frequency Am  and amplitude 02A .
For maximum amplitude

Amcos t 1   

Amt n   

2 1 2 1 2 1 2 1 2 1 2 1

2n 2n n 1 2 3t 0, , , ,.....
( ) 2 ( )

 
    

             

time difference between subsequent maxima, 
2 1

1t 
  

.

Similarly,

time difference between subsequent minima, 
2 1

1t 
  

.

Beat time : It is time interval between successive maxima.

b
2 1

1t 
 

Beat frequency : 2 1
b

1 =
t

  

Illustration : The superposition of two harmonic oscillator oscillating in same direction result motion of a point given
by cos 2.1 cos 50x a t t
Calculate (i) individual frequency, (ii) Beat frequency

Soln. (i) If 1 1 2 2cos and cosx A t x A t   , then

1 2

2 1 2 12 cos cos
2 2

x x x

A t t   

 

        
   

By comparing, 2 1 2 1
2 1 2 12.1 4.2 and 50.0 100.0

2 2
       

       


