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Kinetic Theory of Gases

Postulates of Kinetic Theory

Suppose a container with volume V contains a very large number of identical molecules N, each of mass m.
Then, the kinetic theory postulates the following :
(a) The molecules behave as point particles as compared to the size of the container and as compared to the

average distance between the molecules.
So, the volume of the molecules can be neglected as compared to the volume of the container and hence
the total volume occupied by the molecules is same as the volume of the container.

(b) The molecules are in constant motion in all the possible directions in a random manner. Each molecule
collides occasionally with the walls of the container and with each other as well. These collisions are
perfectly elastic.
So, the molecules possess kinetic energy which is translational in nature only as the molecules are point
particles and hence they can not rotate and vibrate but translate only.

(c) There is no force of attraction among the gas molecules and between the gas molecules and walls of the
container.
So, the molecules do not possess any potential energy.

(d) The container walls are rigid and infinitely massive and do not move.
(e) The molecules obey Newton’s law of motion.
(f ) The average time of collision is much less than the averaged time between two successive collision.

Pressure Exerted by the Gas

How does pressure of the gas originate ? During collisions, the molecules exert forces on the walls of the
container. This is the origin of the pressure that the gas exerts on the wall of the container.
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Steps to calculate the pressure exerted by gas molecules on the walls of the container
1. Number of collisions that occur per unit time for a certain area A of the wall.
2. Total momentum associated with these collisions
3. Force needed to cause this momentum change.

Assuming that all molecules in the gas have the same magnitude of x- component of velocity, xv , we have

For each collision the x-component of velocity changes from tox xv v

So, the change in the momentum is  | 2x x x xp m v m v m v      ... (1)
If a molecule is going to collide with a given wall of area A during a small time interval dt, then at the beginning

of time dt if must be within a distance xv dt  from the wall and it must be headed toward the wall.
So, total number of molecules that collide with area A during time interval dt   Number of molecules within the
cylinder with base area A and length xv dt  and leading towards the wall,
where volume of cylinder = xA v dt

Assuming uniform distribution of molecules, number of molecules in this cylinder  x
N A v dt
V

   
 

On the average, half of these molecules are moving towards the wall (that causes pressure) and half are moving
away from it.

So, number of collision with A during dt  1
2 x

N A v dt
V

   
 

... (2)

Due to all molecules in the gas, the total momentum change during dt is

 No. of collisions  2x xdp m v 

       1 2
2 x x

N A v dt m v
V

   
 

      
22 2

x x x
NAm v dt v v

V
    

2
x xdp NAm v

dt V
  ... (3)

According to Newton’s second law, this rate of change of momentum equals the force exerted by the wall area A
on the gas molecules. From Newton’s III law, this is equal and opposite to the force exerted on the wall by the
molecules.
So pressure P, the magnitude of the force exerted on the wall per unit area, is

2x
x

dpF NP mv
A Adt V

     
 

... (4)

Hence, pressure exerted by the gas depends on the number of molecules per unit volume (N/V), the mass m
per molecule, and the speed of the molecules.

Note: xv  is really not the same for all the molecules. But we could have sorted the molecules into groups

having the same xv  with each group,  where net effect of the molecules is  2

avgxv .

Also, speed v of ‘a’ molecules is
2 2 2 2

x y zv v v v  
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For all molecules,

              2 2 2 2
x y zavg avg avg avg

v v v v   ... (5)

Since there is no real difference in our model between , andx y z  direction, we have

     2 2 2   x avg y zavg avg
v v v

2 23     avg x avgv v

   2 21
3x avg avg

v v  ... (6)

Using equation (4), we have

 21
3


avg

NP m v
V

     2 2 2 21
3 avg avg

PV Nm v v v v        
 ... (7)

If  be the mass density of the gas, then

mN
V



So, 2
avg

1 ( )
3

P v 

Problem : One mole of a gas is contained in a cube of side 0.2 m. If these molecules, each of mass 5 × 10–26 kg, move
with the translational speed 483 ms–1, calculate the pressure exerted by the gas on the sides of the cube.
(a) 2.9 × 105 N/m2 (b) 2.9 × 106 N/m2 (c) 5.8 × 105 N/m2 (d) 5.8 × 106 N/m2

Soln. Given : 3 3 26(0.2) , 5 10 , 1 mole, 483 m/sV m m kg n v    
The pressure is given by

2
avg

1 ( )
3

mNP v
V



26 23
3

3
1 5 10 6.023 10 (483)
3 (0.2)

  
  

1.65 kPa.
Correct option is (a)

Problem : The r.m.s. speed of nitrogen at STP, if the density of nitrogen is 1.25 kg-m–3 at these conditions is
(a) 490 km/s (b) 490 mm/s (c) 490 m/s (d) 490 m/s

Soln. Given : 31 , 1.25 kg-mP atm   
The pressure of the gas is

2 2
avg r.m.s avg

1 ( ) , where ( )
3

P v v v 

2
r.m.s r.m.s

1 3( )
3

PP v v


   
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5

r.m.s
3 1 1.01 10 492 m/s.

1.25
v   

  

Correct option is (c)

(a) Relation between pressure, volume and translational kinetic energy :

Now the average translational Kinetic energy (K.E) of a single molecule  21
2 avg

m v .

So the average total random kinetic energy E of translational motion of all the molecules is

 2v
2 avg

NE m ... (8)

Equations (7) and (8)  2
3

PV E  ... (9)

Problem : Calculate the number of molecules in 1 litre of an ideal gas at 1.5 atm pressure. The mean K.E. of a
molecule is 4 × 10–11 J.
(a) 5.68 × 1012 (b) 5.68 × 1013 (c) 5.68 × 104 (d) 5.68 × 1014

Soln. Given : 11
1molecule1 , 1.5 , 4 10 JV L P atm E    

The total average thermal energy is

molecules
3
2NE PV

5 2 3 33 (1.5 1.01 10 Nm ) (1 10 )
2

m      

227.25 J

Therefore, required number of molecules, 12
11

227.25 5.68 10 .
4 10

N   


Correct option is (a)

(b) Average thermal translational kinetic energy :
Comparing with ideal gas equation

PV nRT ,
where n is the number of moles of the gas and T is the absolute temperature, we have

3
2

E nRT ... (10)

This is average thermal translational kinetic energy of ‘n’ moles of an ideal gas which clearly shows that trans-
lational kinetic energy depends only on the temperature of the gas.
Now, average translational kinetic energy of ‘a’ single molecule is given by

3
2

E nRT
N N

  , where An nN ... (11)

So,   
3
2 A

E R T
N N

 
  

 
... (12)

The ratio 
A

R
N

 occurs frequently in molecular theory. It is called Boltzmann’s constant Bk .
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1 1
23 1

23 1

8.314 J mol K 1.38 10 J K
6.022 10 molB

A

Rk
N

 
 

    


So, average kinetic translational energy of a molecule = 
3
2 Bk T

Problem : What is the average translational kinetic energy of a molecule in 1 mole of a gas at 27ºC ?
(a) 6.21 x 10-21  J (b) 6.21 x 10-22J (c) 6.21 x 10-23J (d) 6.21 x 10-20J

Soln. Given : 27 º C 300 KT  

Average translational kinetic energy per molecule 3
2

 Bk T 233 1.381 10 300
2

    216.21 10 J 

Correct option is (a)

Problem : The average translational kinetic energy of O2 (molar mass 32) molecules at a particular temperature is
0.048 eV. The translational kinetic energy of N2 (molar mass 28) molecules in eV at the same temperature is

(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768
Soln. Average translational kinetic energy of an ideal gas molecule is 3/2 kBT which depends on temperature only.

Therefore, if temperature is same, translational kinetic energy of O2 and N2 both will be equal.
Correct option is (c)

(c) Molecular Speeds : Root-mean-square speed (vrms)

The average translational  kinetic energy of a molecule is equals to 
3
2 Bk T .

Also , from the basic definition of kinetic energy,  the average translational kinetic energy of a molecule must

also be equals to  2
.

1
2 avg

m v  So,

                      2
.

1 3
2 2 Bavg

m v k T ... (13)

where square-root of  2

avg
v   Root-mean square speed (or r.m.s. speed) vrms

  2 3 3B
rms avg

k T RTv v
m M

   B
A

Rk
N

 
 

 
 ... (14)

where M is the molar mass of the gas and is equal to mNA.

Problem : What is the root-mean-square speed of a molecule of hydrogen gas at room temperature?
(a) 1.93 m/s (b) 19.3 km/s (c) 19.3 m/s (d) 1.93 km/s

Soln. Molar mass of hydrogen gas, 32 10 kgM  

r.m.s. 3
3 3 8.314 300

2 10
RTv
M 

 
  


[ T = 300 K (room temperature)]

1.93 km/sec
Correct option is (d)
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Problem : According to the kinetic theory of gases, the root-mean-square speed of gas molecules in a monoatomic
ideal gas at a temperature T is

(a) 2 Bk Tv
m

   (b) 2

2
Bk Tv
m

   (c) 2 3 Bk Tv
m

   (d) 2

3
Bk Tv
m

    [H.C.U.-2012]

Soln. The root mean square speed is

2
r.m.s

3 Bk Tv v
m

   

Correct option is (c)

Problem : Assuming that the hydrogen molecules have a root-mean-square speed of 1,270 m/s at 300 K, calculate the
rms at 600 K.
(a) 179.6 m/s (b) 1796 m/s (c) 2796 m/s (d) 279.6 m/s

Soln. Given : r.m.s. 1 1 r.m.s. 2 2( ) 1270 m/s, 300 K and ( ) ?, 600 Kv T v T   

Since, r.m.s. 1 1
r.m.s.

r.m.s. 2 2

( )3( )
( )

B vk T Tv
m v T

  

2
r.m.s. 2 r.m.s. 1

1
( ) ( ) 2 1270 1796 m/s.Tv v

T
    

Correct option is (b)

Problem : At room temperature, the rms speed of the molecules of a certain diatomic gas is found to be 1930 m/s. The
gas is

(a) H2 (b) F2 (c) O2 (d) Cl2

Soln. We have, rms
3RTv
M

  and room temperature 300T K


33 8.31 10 3001930

M
  



 M = 2.0 g/mol and hence, the gas is H2.
Correct option is (a)

Problem : Estimate the temperature at which the root-mean-square velocity of nitrogen molecule in earth’s atmo-
sphere equals the escape velocity from earth’s gravitational field. Take the molar mass of nitrogen molecule = 28 gm/
mol and radius of earth = 6,400 km.
(a) 1.4 × 106 K (b) 1.4 × 107 K (c) 1.4 × 105 K (d) 1.4 × 104 K

Soln. Given : 28 g/mol, 6400 kmeM R 

We have, r.m.s esv v

3 2 e
RT gR
M

 

2
3

eg R MT
R

 
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6 32 10 6.4 10 28 10
3 8.314

    




51.4 10 .K
Correct option is (c)

Problem : Five gas molecules chosen at random are found to have speeds of 500, 600, 700, 800 and 900 m/s? What
is the rms speed and average speed?
(a) vrms=700 m/s and vav= 714 m/s (b) vrms=71.4 m/s and vav= 70.4 m/s
(c) vrms =714 m/s and vav  = 700 m/s (d) vrms=70.4 m/s and vav= 71.4 m/s

Soln. Given : 1 2 3 4 5500 m/s, 600 m/s, 700 m/s, 800 m/s, 900 m/sv v v v v    
5

1
avg.

500 600 700 800 900 700 m/s
5 5

i
i

v
v     

  


and 

1/25
2

1/22 2 2 2 2
1

r.m.s.
500 600 700 800 900 714.14 m/s

5 5

i
i

v
v 

 
            

   
 



Correct option is (c)

Problem : One gram mole of oxygen at 27°C and one atmospheric pressure is enclosed in a vessel.
(a) Assuming the molecules to be moving with vrms, find the number of collisions per second which the mol-

ecules make with one sqaure metre area of the vessel wall.
(b) The vessel is next thermally insulated and moved with a constant speed v0. It is then suddenly stopped. The

process results in a rise of the temperature of the gas by 1°C. Calculate the speed v0.

Soln. (a) rms 3
3 3 8.31 300 483.4 m/s

32 10
RTv
M 

 
  


Let n molecules of oxygen strike the wall per second per m2 and recoil with same speed.
So, change in momentum per m2 is (2nmvrms).
Hence, the pressure is 0 rms2P nmv

5
270

rms
26

1.01 10 1.96 10 per sec
2 322 (483.4)

6.02 10

Pn
mv


    

 
  

(b) For this, we have
2

gas 0
1 ( )
2 Vm v nC T 


0 26

gas

5(2) ( ) 8.31 (1)
2 2 36 m/s

(6.02 10 ) (32)
V

n
nC Tv
m

      

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Problem : A cubical box of side 1 m contains helium gas (atomic weight 4 units) at a pressure of 100 N/m2. During an
observation time of 1 s, an atom travelling with the root mean square speed parallel to one of the edges of the
cube, was found to make 500 hits with a particular wall, without any collision with other atoms. Take,

2325 J/mol-K and  = 1.38  10 J/K.
3

 BR k

(a) Evaluate the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
(c) Evaluate the total mass of helium gas in the box.

Soln. Given : Volume of the box = 1 m3

Pressure of the gas = 100 N/m2

Let T be the temperature of the gas. Then,

(a) Time between two consecutive collisions with one wall 
1 s

500
 . This time should be equal to 

rms

2l
v

, where
l is the side of the cube.



        
rms

2 1
500

l
v



rms 1000 m/s ( = 1 m)

3 1000

v l

RT
M

 

 

2 6 3(1000) (10) (4 10 ) 160 K
3 3(25/3)

MT
R


   

(b) Average kinetic energy per atom 23 213 3 (1.38 10 ) (160) J = 3.312  10 J
2 2

    Bk T

(c) From  
mPV nRT RT
M

, we have

We get mass of helium gas in the box, 
PVMm
RT

Substituting the values, we get
(100) (1) (4) 0.3 g
(25/3) (160)

m  

Molecular Speeds Distribution

The molecules in a gas don’t have the same speed rather the molecules posses a value of speed that lies from
zero to infinity and hence the speeds are distributed among the molecules. So we will study a function ( )f v
that will help us to know how a particular number of molecules possess a certain amount of speed. This
function is called molecular speed distribution function.
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If we observe dN molecules out of total N molecules having speed lies from v to v + dv, the corresponding
fraction or the probability is given by

 dN f v dv
N

 ... (15)

The Maxwell-Boltzmann Speed Distribution

The function ( )f v describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann
speed distribution function.
Deriving from the statistical physics, it is, in 3-dimensions, equals to

 
23/2

224
2

 
   

B

mv
k T

B

mf v v e
k T , 0   v ... (16)

where m is the mass of a molecule of the gas
      v is the speed of the molecules which is different for different group of molecules.
     T is the absolute temperature.

In terms of number of moles, the distribution function is

 
23/2

2 24
2

Mv
RTMf v v e

RT
    

The graph representing Maxwell-Boltzmann distribution function is

v

f v( )

Features of the Speed Distribution Graph

(a) The graph is not symmetrical.
(b) At each temperature, the height of the curve for any value v is proportional to the number of molecules with

speeds near v.
(c) The area A1 represents the fraction or the probability that some molecules (say N1) have speed lies be-

tween 1v  and 2v . Mathematically,,
2

1

1
1 ( ) ,

v

v

NdNA f v dv
N N

   
where N is the total number of molecules.

(d) The total area under the curve is given by

2
3/2

22

0 0

( ) 4
2

Bmv k T

B

mA f v dv v e dv
k T




 
 

   
 

 

 2

1
20

1 2
Using , we have

2

n ax
n

n
x e dx

a







                       

A1

v1 v2
v

f v( )
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3/2

3/2
3/24 1

2
2

2
B

B

mA
k T m

k T




 
  

   
 
 

So the total area under the curve is unity. This is because the sum of the total probability is one.
(e) There are very few number of molecules having very slow speed and very large speed as well.
(f ) There is a speed corresponds to which the function ( )f v  is maximum. It means the maximum number of

molecules possesses speed near this particular value of speed. We call this speed as the most probable
speed ( )pv .

Problem : A quantity of gas containing N molecules has a  speed distribution function ( )f v .How many molecules have
speeds between and v1and v2?

(a)
2 1

0 0

( ) ( ) 
v v

f v dv f v dv (b)
2 1

0 0

( ) ( )
 
 
  
 
v v

N f v dv f v dv

(c)
1 2

0 0

( ) ( ) 
v v

f v dv f v dv (d)
1 2

0 0
( ) ( )

 
 
  
 
v v

N f v dv f v dv

Soln. Required number      2 2 1

1 0 0
       

v v v

v
N f v dv N f v dv f v dv

Correct option is (b)

Various Speeds Possess by the Molecules

(a) The average speed (vavg/v/ v ) :
(i) Definition : It is the average speed possesses by the molecules of the gas.
(ii) Calculation : It is given by

 
23/2

23

0 0
4

2
B

mv
k T

avg
B

mv vf v dv v e dv
k T

  
    
 

Using 
2

10
2

1
2

2

 


 
 
 


 n ax

n

n

x e dx
a

, we have ... (17)

13/2
2

2 3/2

82 4 14
2 2 2

2
2

B
avg

B B

B

k Tm mv
k T k T mm

k T


    

            
 
 

... (18)

8 8B
avg

k T RTv
m M

  
  ... (19)

(b) Most probable speed (vmp) :
(i) Definition : The maximum number of molecules possess speeds near a particular value. This particular

value is known as the most probable value.
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(ii) Calculation : For this speed, the value of  f v  is maximum. So using (19) and concept of maxima and
minima, we have

          0
d f v
dv

2 23/2 3
2 224 2 0

2 2
B B

mv mv
k T k T

B B

m mvve e
k T k T

   
          

23/2 2
24 2 1 0

2 2

   
         

B

mv
k T

B B

m mvve
k T k T .

This gives

Either v = 0  or,   
2

2 0


B

mv
k Te   v  or, , 

2

1 0
2

 
B

mv
k T

20, , or Bk Tv v v
m

   

where 0 andv v    corresponds to minimum value of ( )f v .

So       2 2B
mp

k T RTv
m M

  ... (20)

(c) The rms speed (vr.m.s) :
(i) Definition : It is the speed observed during the experiments and is given by

             2rmsv v ... (21)

(ii) Calculation : Now   
23/2

22 2 4

0 0
4

2
B

mv
k T

B

mv v f v dv v e dv
k T

  
    
 

Using    2

10
2

1
2

2

 




 n ax
n

n

x e dx
a

, we have

3/2
2

5/2

5 324
2

2
2

B

B

B

k Tmv
k T mm

k T

 
       

 
 

So   2 3 3B
rms

k T RTv v
m M

   ... (22)

Problem : Consider a collection of molecules of an ideal gas at temperature T. The ratio of the rms speed to the most
probable speed of the molecule is [IISc 2009]
(a) 3 : 2 (b) 3 : 8 (c) 3:8 (d) 3: 2

Soln. r.m.s. 3 3 .
2 2

 
p

RT Mv
v RT M

Correct option is (a)
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Problem : Three closed vessels A, B and C at the same temperature T and contain gases which obey the Maxwellian
distribution of velocities. Vessels A contains only O2, B only N2 and C a mixture of equal quantities of O2 and
N2. If the average speed of the O2 molecules in vessel A is v1, that of the N2 molecules in vessel B is v2, the
average speed of the O2 molecules in vessel C is

(a) 1 2( )/2v v (b) v1 (c) 1/2
1 2( )v v (d) 3 /Bk T M

Soln. The average speed of molecules of an ideal gas is given by

8 . .,RTv i e v T
M

       for same gas.

Since temperature of  A and C are same, average speed of O2 molecules will be equal in A and C i.e., v1.

Correct option is (b)

Problem : This problem is a multiple select question (MSQ).
Let v , v p  and vrms respectively denote the mean speed, root mean square speed and most probable speed of
the molecules in an ideal monoatomic gas at absolute temperature T. The mass of a molecule is m. Then,

(a) no molecule can have a speed greater than rms2 v

(b) no molecule can have a speed less than v / 2p

(c) rmsv v v p

(d) the average kinetic energy of a molecule is 23 v
4 pm

Soln. The molecules can possess any value of speed lies from zero to infinity. Hence options (a) and (b) both are
incorrect.
Moreover, we know that,

rms
3 8 2.5 2v , v and v    p

RT RT RT RT
M M M M

From these expressions we can see that, rmsv v v p

Secondly, rms
3v v
2

 p

and average kinetic energy of a gas molecule
2

2 2
rms

1 1 3 3v v v .
2 2 2 4

 
    

 
p pm m m

Correct options are (c, d)

Comparison of the Different Speeds

We know that,

3 2 8, ,rms mp avg
RT RT RTv v v
M M M

  


8Clearly, : : 3 : 2 :rms mp avgv v v 


1.732 :1.414 :1.596
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So, rms avg mpv v v 

The graph representing , ,rms avg mpv v v  is

vmp v̄ vrms v

f v( )

Problem : If r.m.sC ,C  and mC  denote respectively the r.m.s speed, average speed and most probable speed mol-
ecules in a gas obeying Maxwell-Boltzmann distribution law for the molecular speeds, then   [B.H.U-2011]

(a) m r.m.sC C C  (b) r.m.s mC C C  (c) r.m.s mC C C  (d) r.m.s mC C C 

Soln. We know that,

r.m.s
3 8 2, and m
RT RT RTC C C
M M M

  

r.m.s
8: : 3 : : 2 1.732 :1.596 :1.414mC C C


  

r.m.s mC C C  
Correct option is (c)

Speed Distribution of the Same Gas at Different Temperature

The speed distribution graphs for the same gas at two different temperatures 1T  and 2T  1( )T  is given by :

f(
v ) T2

T1

v

The reasons for this nature of the graphs are :
(a) Since speed varies proportional to the square root of the temperature, the increase in the temperature

causes the greater fraction of molecules to have more value of speed. This causes the broadening of
the graph.

(b) Since the graph under the curve is unity, the broadening of the curve, on increasing the temperature, falls the
curve’s peak down.
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Problem : For temperature T1 > T2, the qualitative temperature dependence of the probability distribution F(v) of the
speed v of a molecule in three dimensions is correctly represented by the following figure:

(a)

F (
v )

T2

T1

v

(b)  

F (
v )

T1

T2

v

(c)

F (
v )

T2

T1

v

(d)

F (
v )

T1

T2

v

Soln. Correct option is (a)

Maxwellian Speed Distribution Function in Different Dimensions

The Maxwellian speed distribution function in different dimensions is given by :

(a) In three dimension :  
23/2

224
2

B

mv
k T

B

mf v v e
k T

 
   

(b) In two dimension :  
22/2

22
2

B

mv
k T

B

mf v v e
k T

 
   

(c) In one dimension :  
21/2

2

2
B

mv
k T

B

mf v e
k T

 
   

As we did for the 3-dimensions, we can also calculate different speeds in other dimension as well. Using the
Maxwell-Boltzmann speed distribution functions in different dimensions, we are getting the following values of
the various speeds as :

avg

mp

r.m.s.

Dimensions 3 2 1
Speeds

8 2
2

2 0

3 2

B B B

B B

B B B

k T k T k Tv
m m m

k T k Tv
m m
k T k T k Tv
m m m


 




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Problem : Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity
distribution. The most probable speed of these electrons is, [JEST 2015]

(a) 
2
kT

m
 
 
 

(b) 2kT
m

 
 
 

(c) 0 (d) 8kT
m

 
 
 

Soln. The one-dimensional Maxwellian distribution for speed is
21/2

2( ) 2 ; 0
2

B

mv
k T

B

mf v e v
k T

 
     

For most probable speed ( )pv v , we have

( ) 0 0.
p

p
v v

d f v v
dv 

  

Correct option is (c)

Maxwell Boltzmann Velocity Distribution Function

Till now, we have studied about the distribution of speeds among the molecules. Now, we will study about the
same thing in terms of velocity distribution.
(a) In one dimension :
The velocity distribution function ( say in x-direction) is given by

21/2
2( ) ,

2
B

mvx
k T

x x
B

mf v e v
k T


 

      
... (23)

(i) The average velocity :
It is given by

21/2
2( )

2

x

B

mv
k T

x x x x x x
B

mv v f v dv v e dv
k T

 

 

 
    
 

Using ( ) 0
a

a

f x dx


   if   f (–x) = – f (x), we have

0xv 
This shows that molecules are distributed uniformly and moving randomly in a gas.
(ii) The most probable velocity :

For this, we have

( )

( ) 0x
x v vx x p

d f v
dv





    ( ) 0x pv 
(iii)The rms velocity : It is given by

2( )x rms xv v

Now  2 2 ( )x x xv v f v dx




 
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21/2
22

2
B

mvx
k T

x x
B

m v e dv
k T





 
   



                  Bk T
m



   ( ) B
x rms

k Tv
m

 

Hence, the rms velocity is same as rms speed. Similarly we can calculate in y and z-axes and we will get the
same result as all the directions are identical in nature.
(b) In two dimensions : The velocity distribution is given by

( , ) ( ) ( )x y x yf v v f v f v

               
2/2 2 2( )

2 , ,
2

m v vx yk TB
x y

B

m e v v
k T


 

      
... (24)

(i) The average velocity : It is given by
ˆ

x yv v i v j 

where ( , ) ( ) ( )x x x y x y x x x y yv v f v v dv dv v f v dv f v dv
   

   

    

           0 1 0     ( ) 1y yf v dv




 
 

  


Similarly,   0yv 

0v 


(ii) The most probable velocity : It is given by

      ˆ ˆ( ) ( )p x p y pv v i v j 


where 
( ) ( )

( , ) 0 ( , )x y x y
x yv vx p y p

d df v v f v v
dv dv

 

         ( ) ( ) 0x p y pv v 

          0pv 


(iii)The r.m.s velocity : It is given by

   2 2 2
rms x yv v v v  

Now,    
2 2 ( , )x x x y x yv v f v v dv dv

 

 

  

                         =
2 ( ) ( )x x x y yv f v dv f v dv

 

 
 
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                         1B Bk T k T
m m

  

Similiarly ,   2 B
y

k Tv
m



              
2 B

rms
k Tv
m



(c) In three dimension :
 The velocity distribution function is
 ( , , ) ( ) ( ) ( )x y z x y zf v v v f v f v f v

                      
3/2 2 2 2( )

2 , , ,
2

B

m v v vx y zk T
x y z

B

m e v v v
k T


  

      
... (25)

As we have done in last two cases, we can calculate the following :
(i) The average velocity :

0v 


(ii) The most probable velocity :
0pv 

(iii)The rms velocity :

3 B
rms

k Tv
m



(d) Other quantities :

(i)  ( , , )a b c a b c
x y z x y z x y z x y zv v v v v v f v v v dv dv dv

  

  

   

                   ( ) ( ) ( )a b c
x x x y y y z z zv f v dv v f v dv v f v dv

  

  

   

                   a b c
x y zv v v ... (26)

                   = 0 if atleast one out of a, b or c is odd.
Problem : A classical gas of molecules each of mass m, is  in thermal equilibrium at the absolute  temperature, T. The

velocity components of the molecules along the Cartesian axes are vx, vy and vz. The mean value of (vx + vy)
2

is:

(a) Bk T
m (b) 

3
2

Bk T
m (c) 

1
2

Bk T
m (d) 

2 Bk T
m

Soln. 2 2 2( ) 2           x y x y x yv v v v v v

2 2 2Putting v v v         B
x y z

k T
m

2 2 2 21 1 3v (v v v )
2 2 2

      
 x y z Bm m k T

2

and 0

2So, ( ) 0

  

      

x y

B B B
x y

v v

k T k T k Tv v
m m m

Correct option is (d)
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Problem : A gas of molecules each having mass ‘m’ is in thermal equilibrium at a temperature T. Let , ,x y zv v v  to be the

Cartesian components of velocity, v , of a molecule. The mean value of  2
 is:x y zv v v  

(a)  2 21 Bk T
m

   (b)  2 21 Bk T
m

   (c)  2 2 Bk T
m

  (d)  2 2 Bk T
m

 

Soln. From Maxwell-Boltzmann’s distribution, we have

2 2 2 and 0B
x y z x y y z z x

k Tv v v v y v v v v
m

     

So,    2 2 21 B
x y z

k Tv v v
m

       

Correct option is (a)

Problem :  Let vx ,vy, and vz denote the components of the velocity along x-,y-, and z- directions, respectively,of an
ideal gas particle. At the absolute temperature T, the average value of the product vx

2 vy
2 vz

2 is proportional to
(a) T (b) T3/2 (c) T3 (d) T6

Soln. The law of equipartition gives

2 2 21 1 1 1
2 2 2 2x y z Bmv mv mv k T  

2 2 2 B
x y z

k Tv v v
m

   

3
2 2 2 2 2 2 3B
x y z x y z

k Tv v v v v v T
m

     
 

Correct option is (c)

Problem : A gas, the molecules of which have mass m, is at equilibrium at absolute temperature T. The root-mean-
square of the relative velocity between any two molecules of the gas is:

(a) 4 /Bk T m (b) 3 / 2Bk T m (c) 3 /Bk T m (d) 6 /Bk T m
Soln. Relative velocity of two gas molecule is

1 2rv v v   

2 2 2
1 2 1 22 .rv v v v v   

 

    2 2 2
1 2 1 2

3 3 62 . 0r
kT kT kTv v v v v
m m m

       

where we have used 1 2 0v v 
 

2( ) 6 .r r Bv v k T m  

Correct option is (d)

Problem : Suppose you measured vx (the x-component of the velocity) of every atom in a one-litre can of helium
gas (4He), kept in equilibrium at 300 K and at atmospheric pressure, at a particular instant of time. The

standard deviation 
22

x xv v  in the measurement is approximately equal to

(a) 450 m/s (b) 1120 m/s (c) 1400 m/s (d) 800 m/s (e) 14000 m/s
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Soln. The average velocity is given by 0xv  


22 2 x x xV V V

21 1 3
3 3

RT RTV
M M

   

3

8.314 300 800 m/s.
4 10


 



Correct option is (d)

Problem : If energy    distribution formula for an ideal gas in thermal equilibrium at temperature T is given by

/k Tj BdN e d
   (where j is a real number), then the velocity distribution of the system is proportional

to

(a) 2 /22  Bmv k Tv e dv (b) 2 /22  Bmv k Tjv e dv

(c) 2 /22 1  Bmv k Tjv e dv (d) 2 /22 1  Bmv k Tjv e dv [H.C.U.-2016]

Soln. Given : / Bk TjdN e d
  

We know that the molecules of an ideal gas do not have any potential energy and hence

21
2

mv d mv dv   

2 2

2 22 2 11 ( ) .
2

B B

j mv mv
k T k TjdN mv e mv dv v e dv

 
    

 
Correct option is (d)

Degree of Freedom

(a) Definition : It is defined as the total number of independent variables required to describe completely the
state of motion of a body. It can be calculated as

3f N C  ,
where N represents the number of particles [atoms in case of molecules] and C represents the number of
constraints [bonds or lone pairs in case of molecules].
Different molecules have various types of degree of freedom corresponds to various types of motion they
perform like translation, rotation and vibration. When the molecules are at low temperature, they exhibit only
translational motion and hence have only translational degree of freedom. When the temperature increases,
they also perform rotational motion along with the translational motion and hence possesses degree of freedom
corresponds to both type of motion. When the temperature is sufficiently high, the bonds get weaker and
causes the molecules to vibrate along with both translational and rotational motion.
The degree of freedom for various molecules can be calculated as :
(a) For monoatomic molecules [e.g., Ar, Xe, Rn, He].

Each molecule contains one atom and has no bond. So, N = 1 and C = 0.
Therefore, f = 3 × 1 – 0 = 3.
All these three degree of freedom corresponds to translational degree of freedom.
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(b) For diatomic molecules [e.g., O2, N2, H2].
Since each diatomic molecule contains two atoms, we have N = 2.
(i) At low temperature : The bond between the two atoms remain rigid and hence there is only one

constraints.
Therefore, f = 3 × 2 – 1 = 5.
Out of these 5, 3 corresponds to translational motion and 2 corresponds to vibration motion.

(ii) At high temperature : The bond between the atoms do not remain rigid causing the atoms to vibrate
as well and hence there is no constraints at high temperature.
Therefore, f = 3 × 2 – 0 = 6.
In this 3 corresponds to translational, 2 corresponds to rotation and the remaining 1 corresponds to
vibrational motion.

(c) For linear triatomic molecules [e.g., CO2, N2O].
Since each linear triatomic molecule has three atoms, we have N = 3.
(i) At low temperature : Since there are two bonds, the number of constraints will be two.

Therefore, f = 3 × 3 – 2 = 7.
Out of these 7, 3 corresponds to translation, 2 corresponds to rotation [as the molecules are linear]
and the remaining 2 are because of vibrational motion. But if the molecules have rigid bonds, these two
vibrational degree of freedom are not active.

(ii) At high temperature : The bonds will not remain constraints and hence C = 0.
Therefore, f = 3 × 3 – 0 = 9.
Out of these 9, 3 corresponds to translation, 2 corresponds to rotation and the remaining 4 corre-
sponds to vibrational mode.

(d) Non-linear triatomic molecules [e.g., O3, H2O].
Since each non-linear triatomic molecules has three atoms, we have N = 3.
(i) At low temperature : The three bonds will behave as three constraints. So, we have

 f = 3 × 3 – 3 = 6.
The three, here, corresponds to translational and the remaining three corresponds to rotation [as the
molecule is non-linear].

(ii) At high temperature : The bonds will not remain constraints. So, we have
 f = 3 × 3 – 0 = 9.
The three will corresponds to translation, three to rotational and the remaining three will corresponds
to vibration.

In general, the degree of freedom can be distributed as :
(i) At low temperature :

Types of molecule Linear molecule Non-linear molecule
Mode

Translation 3 3
Rotation 2 3
Vibration 3 5 3 6N C N C





   

(ii) At high temperature :
Types of molecule Linear molecule Non-linear molecule

Mode
Translation 3 3

Rotation 2 3
Vibration 3 5 3 6N N





 
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Law of Equipartition of Energy

For 1-D, the Maxwell’s velocity distribution function is

 
21/2

2 ,
2

B

mv
k T

B

mf v e v
k T

 
      

So, average kinetic energy is

 

 

2

2

1/2
22

1/2
2

1
2 2

2

B

B

mv
k T

B
mv
k T

B

mmv e dvEf v dv
k T

E
mf v dv e dv
k T

 


  

 

 
   

 
  



 
... (27)

    

22

2 2

22 22

0

2 2

0

2 2

BB

B B

mvmv
k Tk T

mv mv
k T k T

v e dvv e dv
m m

e dv e dv

 



  



 


 

2

1
0 2

1
2Using , we have

2

n ax
n

n

x e dx
a










3/2

1/2

3 12
2 2 22

2 21 2
2 2

B B

B

m
k T k Tm mE

mm
k T

 
  
   

 
 
 

1
2 BE k T  ... (28)

(a) Statement : In thermal equilibrium, any degree of freedom (such as component of the position or velocity
of a particle) which appears only “quadratically” in the energy has an average energy per molecule of

1
2 Bk T .

This is the law of equipartition of energy.
(b) Examples :
(i) A free particle of mass m moving in xy-plane

The Hamiltonian will be
22

2 2
yx ppH

m m
 

Since there are two quadratic terms, the average thermal energy is
12
2 B BE k T k T    
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(ii) A free particle rotating in xy-plane about z-axis
The corresponding Hamiltonian is

2
,

2
zLH
I



where I is the moment of inertia of the particle about z-axis.

z

y

x

Therefore, the average thermal energy is
1 11
2 2B BE k T k T    

(iii)A one-dimensional harmonic oscillator in x-axis
The corresponding Hamiltonian is

2
21 ,

2 2
x

x
pH k
m

 

where k is the spring’s constant.
Therefore, the average thermal energy is

12
2 B BE k T k T    

(c) Other statement : The law of equipartition of energy, therefore, can be re-stated as :

“The average energy corresponds to each translational degree of freedom is 1
2 Bk T , corresponds to each

rotational degree of freedom is 1
2 Bk T  and corresponds to each vibrational degree of freedom is Bk T ”.

Mathematically, Translation Rotation Vibration
1 1
2 2B B BE f k T f k T f k T        . ... (29)

Problem : Calculate the average thermal energy of a diatomic molecule in both low temperature and high temperature
condition.

Soln. (i) At low temperature, we have

Translational 3f   and Rotation 2f  .

Therefore, 1 1 53 2
2 2 2B B BE k T k T k T       .

(ii) At high temperature, we have

Translational 3f  , Rotation 2f   and Vibration 1f  .

Therefore, 1 13 2 1
2 2B B BE k T k T k T       

7
2 Bk T

Note : The formula for average thermal energy per particle as 
2 B
fE k T    is valid only when there is no

vibrational mode.

Problem : A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K. The ratio of the
average rotational kinetic energy per O2 molecule to per N2 molecule is
(a) 1 : 1 (b) 1 : 2 (c) 2 : 1
(d) depends on the moment of inertia of the two molecules
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Soln. Since both the gases are diatomic, both will have the same number of rotational degree of freedom i.e., two.
Therefore, both the gases will have the same average rotational kinetic energy per molecule = 2 × 1/2 kBT or
kBT. Thus ratio will be 1 : 1.
Correct option is (a)

Problem : A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibra-
tional modes, the total internal energy of the system is
(a) 4 RT (b) 15 RT (c) 9 RT (d) 11 RT

Soln. Internal energy of n moles of an ideal gas with no vibrational degree of freedom at temperature T is given by

          2
fU n RT   

 
where, f = degree of freedom.

  = 5 for O2 and 3 for Ar

Hence,           
2O Ar

5 32 4 11
2 2

U U U RT RT RT          
   

.

Correct option is (d)

Problem : In 1-dimension, an ensemble of N classical particles has energy of the form 
2

21
2 2

xpE kx
m

  . The average

internal energy of the system at temperature T is

(a)
3
2 BNk T (b)

1
2 BNk T (c) 3 BNk T (d) BNk T

Soln. The given Hamiltonian is
2

21
2 2

 xpE kx
m

According to equipartition theorem, the contribution of each quadratic term in Hamiltonian to average

thermal energy is 1
2 Bk T . So the average thermal energy of one particle is

1
1 1
2 2B B BU k T k T k T  

   Average thermal energy of N-particle system is

1 BU NU Nk T 
Correct answer is (d)

Problem : A system of N classical non-interacting particles, each of mass m, is at a temperature T and is confined
by the external potential V(r)= ½ Ar2 (where A is a constant) in three dimensions. The internal energy of
the system is

(a) 3 BN k T (b)
3
2 BN k T (c) 3/2(2mA) BN k T (d) 1/2(2mA) BN k T

Soln. The Hamiltonian of a classical particle 
2

21
2 2

 
pH Ar
m

         
2 2 2

2 2 21
2 2

x y zp p p
A x y z

m
 

   
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Since the Hamiltonian has 6 quadratic term, the internal energy of a particle is 16 3
2

 B Bk T k T

The internal energy of a system of N particles = 3NkBT.
Correct answer is (a)

Problem : A system of N non-interacting classical point particles constrained to move in the two-dimensional surface
of a sphere. The internal energy of the system is

(a) 3
2 BN k T (b) 1

2 BN k T (c) BN k T (d) 5
2 BN k T

Soln. Since the particle is moving on two-dimensional surface, its degree of freedom = 2
Hence, for N non-interacting particle total degree of freedom = 2N

Hence, total energy 12
2 BU N k T 

 U = NkBT
Correct option is (c)

Problem : Mean total energy of a classical three-dimensional harmonic oscillator in equilibrium with a heat reservoir at
temperature T is:

(a) Bk T (b) B
3 k T
2 (c) B2 k T (d) B3 k T

Soln. The Hamiltonian of a three-dimensional harmonic oscillator is
2 2 2

2 2 2
1 2 3

1 1 1
2 2 2 2

x y zp p p
H k x k y k z

m
 

   

Since there are six quadratic terms, we have
16 3
2 B BE k T k T    

Correct option is (d)

Problem : A classical ideal gas of atoms with masses m is confined in a three-dimensional potential    [TIFR 2018]

2 2 2( , , ) ( )
2

V x y z x y z
  

at a temperature T. If Bk  is the Boltzmann constant, the root mean square (r.m.s.) distance of the atoms from
the origin is

(a)
1/23 Bk T 

  
(b)

1/23
2

Bk T 
  

(c)
1/22

3
Bk T 

  
(d)

1/2
Bk T 

  

Soln. The given potential is 2 2 2( , , ) ( )
2

V x y z x y z
  

Using law of equipartition of energy, we have

2 2 2 3( )
2 2 Bx y z k T

  

2 3
2 2 Br k T

   
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2
r.m.s.

3 .Bk Tr r


    

Correct option is (a)

Molar Specific Heats

(a) Molar specific heat at constant volume (Cv) :
It is given by

v
V

C E
T
     

... (30)

where E   is the average energy of one mole of the substance.

Translation Rotation Vibration
1 1
2 2vC f R f R f R       ... (31)

If there is no vibrational mode, we have

Translation Rotationf f f 

2v
fC R  ... (32)

(b) Molar specific heat at constant pressure (Cp) :
For an ideal gas, it is given by

p vC C R 
If there is no vibrational mode, we have

1
2p
fC R   

 
... (33)

(c) Ratio of specific heats/Adiabatic index () :
It is defined as

p

v

C
C

  ... (34)

If there is no vibrational mode, we have

1
22 1

2

f R

f fR

  
     ... (35)

Problem : For which gas the ratio of specific heats (Cp/Cv) will be largest? [JEST 2014]
(a) mono-atomic (b) di-atomic (c) tri-atomic (d) hexa-atomic

Soln. The ratio of specific heat is

 2

2

1f
p

f
v

RC
C R


 , where f  is the degree of freedom for the gas

      21 .
f

 

Since f  is minimum for mono-atomic gas, i.e., 3f  , p vC C  will be largest for mono-atomic gas.
Correct option is (a)
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Problem : Consider the CO molecule as a system of two point particles which has both translational and rotational
degrees of freedom. Using classical statistical mechanics, the molar specific heat CV of CO gas is given in
terms of the Boltzmann constant kB by [TIFR 2014]

(a) 
5
2 Bk (b) 2 Bk (c) 

3
2 Bk (d) 

1
2 Bk

Soln. For diatomic molecule,  we have

translation rotational3 and 2.f f 
The average energy is

translational rotational
Vibrational

5 .
2 2 2B B

f fU f k T k T        
 

Therefore, 5
2v B

dC U k
dt

    .

Correct option is (a)

Problem : Consider oxygen gas at room temperature and pressure and assume that only translational and rotational
motions of the molecules contribute to the specific heat. I f CP and CV denote respectively, specific heats at
constant pressure and volume, then the ratio CP/CV is

(a) 
3
5 (b) 

5
3 (c) 

5
7 (d) 

7
5 [IISc : 2006]

Soln. Since there is no vibrational mode, we have

21  P

V

C
C f



Since oxygen gas molecules are diatomic in nature, there are two degree of freedom associated with rotational
motion and three degree of freedom associated with translational motion.
So, total number of degree of freedom associated with motion of diatomic molecule, f  = 5

2So, 1 1.4
5

   

Correct option is (d)

Problem : A and B are both classical ideal gases of diatomic molecules. The point-like atoms in A are bonded rigidly
to form diatomic molecules while in B they are connected by bonds of finite stiffness. The ratio of the specific
heat per molecule at constant volume of gas A to gas B is [IISc]
(a) 1 (b) 5/7 (c) 6/5 (d) 3/4

Soln. (i) For diatomic molecule A

translational rotational vibrational3, 2 and 0f f f  

translational rotational
vibrational

5
2 2 2v

f fC f R R      
 

(ii) For diatomic molecule B

translational rotational vibrational3, 3 and 1f f f  

7
2vC R 

5Required ratio .
7

 

Correct option is (b)
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Problem : A rigid triangular molecule consists of three non-collinear atoms joined by rigid rods. The constant
pressure molar specific heat (CP) of an ideal gas consisting of such molecules is
(a) 6R (b) 5R (c) 4R (d) 3R

Soln. We know that,

Translational Rotational
Vibrational2 2V

f fC f R    
 

For a non-linear rigid triatomic molecule, we have

Translational Rotational Vibrational3, and 0f f f  

 3VC R

  4P VC C R R  
Correct option is (c)

Problem : The molar specific heat of a gas as given from the kinetic theory is 
5
2

R . If it is not specified whether it is CP

or CV, one could conclude that the molecules of the gas.
(a) Are definitely monatomic (b) Are definitely rigid diatomic
(c) Are definitely non-rigid diatomic (d) Can be monatomic or rigid diatomic.

Soln. We know that Translation Rotation Vibration and
2 2 2

       V P V
f f fC R R R C C R

For monoatomic gas, Translation Rotation Vibration3 and 0  f f f

Therefore, 3 7and
2 2

 V PC R C R

For rigid diatomic gas, Translation Rotation Vibration3, 2 and 0  f f f

Therefore, 5 7and
2 2

 V PC R C R .

Therefore, the gas can be monoatomic or rigid-diatomic.
Correct option is (d)

Mean Free Path
In the assumption of kinetic theory of gases, we assumed that the molecules of gas are moving with very high
velocity which means that molecules of gas contained in vessel should disappear in no time which is contrary to
actual observation, because of absence of force to restrain their motion. Thus there was a serious objection
against the assumption  that the molecules of a gas move with large rectilinear velocities. This difficulty was
solved by the Clausius who assumed that  the molecules of a gas have a small, but finite size. These molecule
collide with one another after short intervals resulting in a change in both the magnitude and direction of the
velocities of the molecules.
Since there is no force acting on the molecules except during collision, they move in straight lines with constant
speeds between two successive collision. Thus the paths of diffierent  molecules is a series of short zig-zag
paths of  different length. These paths of different length are called the free paths of the molecule and their
mean is called mean free path.

(a) The mean free path : It is defined as the average distance travelled by a molecule between two succes-
sive collision.
It can be calculated equals to

    2

1
2

 
d n ... (36)
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where d is the diameter of the molecule and n is the particle density i.e. number of molecules per unit volume.


22

N Nn
Vd V

      
 ... (37)

  
22

Bk T
d P

 


, where we have used BPV Nk T ... (38)

(b) The collision time : It is defined as the time between two successive collision. It is equals to

     2 2

1
2 2

Bk T
v d nv d Pv


   
  ... (39)

where v  is the average speed of the molecules
(c) The collision frequency : It is defined as the number of collisions in one second. It is equals to

 21 2 d nv  


... (40)

Problem : Estimate the mean free path of a molecule of air at 27 ºC and 1 atm. Model the molecules as sphere with
radius r = 2.0 × 10–10 m.
(a) 5.8 × 10–9 m (b) 5.8 × 10–8 m (c) 5.8 × 10–10m (d) 5.8 × 10–7m

Soln. Given : 5 2 1027 º C 300 K, 1 atm 1.013 10 N/m , 2.0 10 mT P r       

The mean free path is 22
Bk T
d P

 


, where d is the diameter of the molecules 2r

8
2 5.8 10 m

4 2
Bk T

r P
    


Correct option is (b)

Problem : At what pressure will the mean free path be 50 cm for spherical molecules of radius 3 × 10–10m? Assume an
ideal gas at 20ºC.

Soln. From the expression for the mean free path, we obtain

2
1

4 2
N
V r


 

where ‘r’ is the radius of each molecule.
Combining this with the ideal gas law in the form PV = NkBT, we have

23

2 10 2
(1.38 10 J/K)(293K) 5.1 mPa

4 2 4 2(3.0 10 m) (0.50 m)
Bk TP

r






  
   

Problem : If the pressure of a gas, at temperature T, in a closed container is decreased then the mean free path
of gas molecules will
(a) increase first then decrease (b) decrease
(c) increase (d) remain the same [H.C.U.-2016]

Soln. The mean free path is given by

22
V
Nd






For a closed container, all the quantities, i.e., N and V will remain same and hence the mean free path will not
change.
Correct option is (d)
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Problem : One mole of an ideal gas with average molecular speed v0 is kept in a container of fixed volume. If the
temperature of the gas is increased such that the average speed gets doubled, then
(a) the mean free path of the gas molecule will increase
(b) the mean free path of the gas molecule will not change
(c) the mean free path of the gas molecule will decrease
(d) the collision frequency of the gas molecule with wall of the container remains unchanged

Soln. The mean free path of the gas molecule is given by

2

1
2 Vd n

 
 (where nV = number of molecules per unit volume)

Since the mean free path is independent of the temperature and of the average speed as well, the mean
free path of the gas molecule will not changed in a container fixed volume.
Correct answer is (b)

Problem : Two boxes A and B contain an equal number of molecules of the same gas. If the volumes are AV  and

BV , and A  and B  denote respective mean free paths, then

(a) A B  (b) A B

A BV V
 

 (c) 1/2 1/2
A B

A BV V
 

 (d) A A B BV V 

Soln.
N, d

V A

Box A
N, d

V B

Box B

The mean free path is given by

2 2

1
2 2

V
nd Nd


 

 

   A A A B

B B A B

V
V V V

  


Correct option is (b)
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Problems to be Played

1. The gas exerts pressure on the walls of the container because the gas molecules
(a) Have finite size (b) Obey Boyle's law
(c) Have momentum (d) Collide with one another

2. Consider a sample  of argon gas contained in a box of volume V. The root-mean square speed of the argon
atoms is vm. If the gas is allowed to expand at constant pressure to a volume of 2V, the root mean square
speed of the gas molecules would be

(a) /2mv (b) 2 mv (c) 2
mv

(d) 2 mv

3. A container of volume of 1 m3 has a gas at 1 atm. The translational kinetic energy of the gas is
(a) 1.5 × 104 J (b) 1.5 × 105 J (c) 1.5 × 10–4 J (c) 1.5 × 10–5 J

4. According to the kinetic theory of gases, pressure exerted by a perfect gas is equal to

(a) 21
2

mv , where v is average velocity (b) mgh

(c) 
2 E,
3

 where E is the mean kinetic energy per unit volume of gas

(d) all of these

5. The average translational kinetic energy of air molecules is 0.040 eV. The temperature of the air is (approxi-
mately) is
(a) 83.7 K (b) 31.0 K (c) 837 K (d) 310 K

6.  The temperature of an ideal gas is increased from 120 K to 480 K. If at 120 K,  the root mean square velocity
of the gas molecules is v, at 480 K it becomes
(a) 4 v (b) 2 v (c) v/2 (d) v/4

7. If   is the density of gas and C is the root-mean-square velocity of the molecules, the mean pressure of the gas
is given by

(a) 2
1

3
P

C



(b) 23P C  (c)

23
3

CP 
 (d)

2

3
CP 



8. The temperature in the Sun’s atmosphere is 2.0 × 106 K. The r.m.s. speed of a free electron, if it obeys kinetic
theory of gas is
(a) 9.5 × 106 m/s (b) 9.5 × 105 m/s (c) 9.5 × 108 m/s (d) 9.5 × 109 m/s

9. The most probable speed vmp and the root mean square speed 'c' are related by–

(a) 
1
2mpv c (b) 

2
3mpv c (c) 

3
8mpv c (d) 

1
3mpv c

10. A classical ideal gas in an enclosure is in equilibrium with a heat bath at a constant temperature. The ratio of the
root-mean square speed rmsV , mean speed meanV  and the most probable speed mpV  namely rms mean mpV : V : V
is:

(a) 
83 : : 2


(b) 
3 2: :1

2 
(c) : 3 : 2 (d) 

1: :
3 8 2
 

11. The average speed of molecules in a gas at 20 C  is v. At what temperature it will be 2v?
(a) 899 C (b) 586 C (c) 80 C (d) 40 C
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12. Assuming the Maxwellian distribution of speeds for molecules of a liquid also, at temperature below the normal
boiling point of a liquid
1. molecules with higher speeds escape from the surface of the liquid.
2. molecules with lower speeds escape from the surface
3. average kinetic enegy of the molecules is the liquid increases as evaporation proceeds
4. average kinetic energy decreases with evaporation
(a) 2 and 3 (b) 1 and 4 (c) 2 and 4 (d) 1 and 3

13. Maxwell's law of distribution of speed show that the number of molecules with average speed is
(a) Very small (b) large (c) zero (d) exactly equal to 1.

14. A gas of molecules each having mass ‘m’ is in thermal equilibrium at a temperature T. If xv  and yv  denote the

Cartesian components of velocity v  of a molecule. The mean value of 3( )x yv v  is

(a) 0 (b)
3/2

Bk T
m

 
 
 

(c)
3/22 Bk T

m
 
 
 

(d)
3/23 Bk T

m
 
 
 

15. A gas of argon atoms is kept in a container of volume V and pressure P and is in equilibrium with a heat bath at
temperature T. The average energy of an argon atom in the gas is:

(a) RT (b) 3kBT (c) 
3
2  kBT (d) 3 RT

where kB is Boltzman constant.

16. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K. The ratio of the average
rotational kinetic energy per O2 molecule to per N2 molecule is
(a) 1 : 1
(b) 1 : 2
(c) 2 : 1
(d) depends on the moment of inertia of the two molecules

17. Above a temperature 0T , the specific heat of a certain gas is approximate 3.5R, and is approximately 2.5R

below 0T . The gas is most likely
(a) oxygen (b) ozone (c) carbon dioxide (d) argon

18. In low density oxygen gas at low temperature, only the translational and rotational modes of the molecules
are excited. The specific heat per molecule of the gas is

(a)
1
2 Bk (b) Bk (c)

3
2 Bk (d)

5
2 Bk

19. What is the mean free time of an oxygen molecule with v = vr.m.s  at 27ºC and 1 atm, where the radius of an
oxygen molecule can be taken equals to  2.0 × 10–10 m?
(a) 1.2 × 10–10 sec (b) 0.2 × 10–10 sec (c) 0.2 × 10–12 sec (d) 1.2 × 10–12 sec

20. The mean free path is
(a) Inversely proportional to the pressure (P) (b) directly proportional to the pressure
(c) proportional to P2 (d) proportional to P4

21. The mean free path of the particles of a gas at temperature T0 and pressure p0 has a value 0 . If the pressure
is increased to 1.5 p0 and the temperature is reduced to 0.75 T0, the mean free path
(a) remains unchanged. (b) is reduced to half
(c) is doubled (d) is equal to 01.125 
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ANSWER KEY

1. (c) 2. (b) 3. (b) 4. (c) 5. (d)

6. (b) 7. (d) 8. (a) 9. (b) 10. (a)
11. (a) 12. (b) 13. (b) 14. (a) 15. (c)
16. (a) 17. (a) 18. (d) 19. (a) 20. (a)
21. (b)


