Chapter 5

ISOMORPHISM

1. **Isomorphic Mapping. Definition:** Suppose G and G' are two groups, the composition in each being denoted multiplicatively. A mapping f of G into G' is said to be an isomorphic mapping of G into G' if

(i) f is one-to-one i.e., distinct elements in G have distinct f-images in G',

(ii) $f(ab) = f(a)f(b) \forall a, b \in G$ i.e., the image of the product is the product of the images.

It should be noted that when we say that f is a mapping of G into G', we usually include in it the possibility that the mapping f may be onto G'. If an isomorphic mapping f of G into G' is onto G', then it is called an isomorphic mapping of G onto G'.

If f is an isomorphic mapping of a group G into a group G', then f is also called an isomorphism of G into G'. If f is an isomorphism of G onto G', the group G' is called an isomorphic image of the group G. Also then we say that the group G is isomorphic to the group G'. Thus we can give the complete definition of isomorphic groups like this:

2. Isomorphic groups. Definition: Suppose G and G' are two groups. Further suppose that the compositions in both G and G' have been denoted multiplicatively. Then we say that the group G is isomorphic to the group G' if there exists a one-to-one mapping f of G onto G' such that

 $f(ab) = f(a)f(b) \forall a, b \in G$ i.e., the mapping f preserves the compositions in G and G'.

If the group G is isomorphic to the group G', symbolically we write $G \cong G'$.

Note 1: If G is isomorphic to G', there may exist more than one isomorphisms of G onto G'.

Note 2: If the group G is finite, then G can be isomorphic to G' only if G' is also finite and the number of elements of G is equal to the number of elements in G'. Otherwise there will exist no mapping f from G to G' which is one-one as well as onto.

Note 3: If the group G is isomorphic to the group G', then we say that the groups G and G' are abstractly identical. From the point of view of abstract algebra we shall regard them as one group and not as two different groups.

3. Some more examples:

Example 1: If \mathbb{R} is the additive group of real numbers and \mathbb{R}^+ the multiplicative group of positive real numbers, prove that the mapping $f : \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = e^x \forall x \in \mathbb{R}$ is an isomorphism of \mathbb{R} onto \mathbb{R}^+ .

Soln. If *x* is any real number, positive, zero or negative, then e^x is always a positive real number. Also e^x is unique. Therefore if $f(x) = e^x$ then $f : \mathbb{R} \to \mathbb{R}^+$.

f is one-to-one.

Let $x_1, x_2 \in \mathbb{R}$. Then $f(x_1) = f(x_2) \implies e^{x_1} = e^{x_2}$

 $\Rightarrow \log e^{x_1} = \log e^{x_2} \Rightarrow x_1 \log e = x_2 \log e \Rightarrow x_1 = x_2$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

Thus, two elements in \mathbb{R} have the same *f*-image in \mathbb{R}^+ only if they are equal. Consequently distinct elements in \mathbb{R} have distinct *f*-images in \mathbb{R}^+ . Therefore *f* is one-to-one.

f is onto: Suppose *y* is any element of \mathbb{R}^+ i.e. *y* is any positive real number. Then log *y* is a real number i.e., log $y \in \mathbb{R}$.

Now $f(\log y) = e^{\log y} = y$. Therefore each element of \mathbb{R}^+ is the *f*-image of some element of \mathbb{R} . Thus *f* is onto.

f preserves compositions in \mathbb{R} and \mathbb{R}^+ . Suppose x_1 and x_2 are any two elements of \mathbb{R} . Then

$$f(x_1+x_2)=e^{x_1+x_2}$$

 $=e^{x_1}.x_2$

= $f(x_1)f(x_2)$ [:: $f(x_1) = e^{x_1}$ and $f(x_2) = e^{x_2}$]

Thus *f* preserves compositions in \mathbb{R} and \mathbb{R}^+ . Here the composition in R is addition and the composition in \mathbb{R}^+ is multiplication. Therefore *f* is an isomorphism of \mathbb{R} onto \mathbb{R}^+ . Hence $\mathbb{R} \cong \mathbb{R}^+$.

Example 2. Let \mathbb{R}^+ be the multiplicative group of all positive real numbers and \mathbb{R} be the additive group

of all real numbers. Show that the mapping $g: \mathbb{R}^+ \to \mathbb{R}$ defined by

 $g(x) = \log x \,\forall x \in \mathbb{R}^+$ is an isomorphism.

Soln. If x is any positive real number, then $\log x$ is definitely a real number. Also $\log x$ is unique. Therefore, if

$$g(x) = \log x$$
, then $g : \mathbb{R}^+ \to \mathbb{R}$.

Let
$$x_1, x_2 \in \mathbb{R}^+$$
. Let $g(x_1) = g(x_2)$

 $\Rightarrow \log x_1 = \log x_2 \Rightarrow e^{\log x_1} = e^{\log x_2} \Rightarrow x_1 = x_2$

Therefore, g is one-to-one.

Suppose *y* is any element of \mathbb{R} i.e. *y* is any real number. Then e^y is definitely a positive real number i.e. $e^y \in \mathbb{R}^+$.

Now $g(e^y) = \log e^y = y$. Thus $y \in \mathbb{R} \Rightarrow$ that there exists $e^y \in \mathbb{R}^+$ such that $g(e^y) = y$. Therefore each element of \mathbb{R} is the *g*-image of some element of \mathbb{R}^+ . Thus *g* is onto.

g preserves compositions in \mathbb{R}^+ and \mathbb{R} . Suppose x_1 and x_2 are any two elements of \mathbb{R}^+ . Then

 $g(x_1x_2) = \log(x_1x_2)$ [by def. of g]

$$= \log x_1 + \log x_2$$

 $= g(x_1) + g(x_2)$ [by def. of g]

Thus *g* preserves compositions in \mathbb{R}^+ and \mathbb{R} . Here the composition in \mathbb{R}^+ is multiplication and the composition in \mathbb{R} is addition. Therefore *g* is an isomorphism of \mathbb{R}^+ onto \mathbb{R} . Hence $\mathbb{R}^+ \cong \mathbb{R}$.

Ex.3. Show that the additive group of integers $G = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is isomorphic to the additive group $G' = \{..., -3m, -2m, -1m, 0, 1m, 2m, 3m, ...\}$ where *m* is any fixed integer not equal to zero.

Soln. If $x \in G$, then obviously $mx \in G'$. Let $f: G \to G'$ be defined by $f(x) = mx \forall x \in G$.

Let
$$x_1, x_2 \in G$$
. Let $f(x_1) = f(x_2)$

 $\Rightarrow mx_1 = mx_2 \qquad [by def. of f]$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455 $\Rightarrow x_1 = x_2$

Therefore f is one-to-one

Suppose y is any element of G'. Then obviously $y/m \in G$. Also f(y/m) = m(y/m) = y.

 $[:: m \neq 0]$

Thus, if $y \in G'$ then there exists $y/m \in G$ such that f(y/m) = y. Therefore each element of G' is the *f*-image of some element of *G*. Hence *f* is onto.

Again, if x_1 and x_2 are any two elements of G, then

 $f(x_1 + x_2) = m(x_1 + x_2)$ [by def. of f] = $mx_1 + mx_2$ [by distributive law for integers] = $f(x_1) + f(x_2)$ [by definition of f]

Thus, f preserves compositions in G and G'. Therefore, f is an isomorphic mapping of G onto G'. Hence, G is isomorphic to G'.

Ex.4. Show that the set \mathbb{C} of all complex numbers under addition is a group which is isomorphic to itself under the identity mapping as well as under the mapping which takes every complex number into its conjugate complex.

Soln. The identity mapping *f* defined by $f : \mathbb{C} \to \mathbb{C}$ such that $f(z) = z \forall z \in \mathbb{C}$ is obviously one-one onto.

Also,
$$f(z_1 + z_2) = z_1 + z_2 = f(z_1) + f(z_2) \forall z_1, z_2 \in \mathbb{C}$$
.

: the identity mapping f is an isomorphism of \mathbb{C} onto \mathbb{C} .

If z = x + iy is any complex number, then $\overline{z} = x - iy$ is called the conjugate complex of z.

Let $g: \mathbb{C} \to \mathbb{C}$ be such that $g(z) = \overline{z} \ \forall z \in \mathbb{C}$

Let $z_1, z_2 \in \mathbb{C}$. Then $g(z_1) = g(z_2) \Rightarrow \overline{z_1} = \overline{z_2} \Rightarrow (\overline{z_1}) = (\overline{z_2}) \Rightarrow z_1 = z_2$

Therefore, g is one-to-one.

If x+iy is any element of \mathbb{C} , then x-iy is also an element of \mathbb{C} . Also g[(x-iy] = x+iy]. Therefore g is onto.

Further, if $z_1, z_2 \in \mathbb{C}$, then $g(z_1 + z_2) = \overline{(z_1 + z_2)} = \overline{z_1} + \overline{z_2} = g(z_1) + g(z_2)$

Hence g is also an isomorphism of \mathbb{C} onto \mathbb{C} .

4. Some important properties of isomorphic mappings:

Let f be an isomorphic mapping of a group G into a group G'. Then we have the following important properties.

(i) The *f*-image of the identity e of G is the identity of G' i.e., f(e) is the identity of G'.

Proof: Let *e* be the identity of *G* and *e'* be the identity of *G'*. Let *a* be any element of *G*. Then $f(a) \in G'$.

Now, e'f(a) = f(a) [:: e' is the identity of G]

= f(ea) [:: *e* is the identity of *G*]

= f(e)f(a) [:: f is an isomorphic mapping]

Now in the group G', we have

 $e'f(a) = f(e)f(a) \implies e' = f(e)$ [by right cancellation law in G']

 \therefore f(e) is the identity of G'.

(ii) The *f*-image of the inverse of an element *a* of *G* is the inverse of the *f*-image of *a* i.e., $f(a^{-1}) = [f(a)]^{-1}$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

Proof : Suppose *e* is the identity of *G* and *e'* is the identity of *G'*. Then f(e) = e'. Now let *a* be any element of *G*. Then $a^{-1} \in G$ and $aa^{-1} = e$. We have

 $e' = f(e) = f(aa^{-1}) = f(a)f(a^{-1})$ [:: f is composition preserving]

Therefore, $f(a^{-1})$ is the inverse of f(a) in the group G'. Thus $f(a^{-1}) = [f(a)]^{-1}$

(iii) The order of an element a of G is equal to the order of its image f(a).

Proof : Suppose *e* is the identity of *G*. Then f(e) is the identity of *G'*. Let the order of *a* be finite and let it be equal to *n*.

Then $a^n = e \Rightarrow f(a^n) = f(e) \Rightarrow f(aaa...n \text{ times}) = f(e)$

 $\Rightarrow f(a)f(a)...n \text{ times} = f(e)$

 $\Rightarrow [f(a)]^n = f(e) \Rightarrow \text{ order of } f(a) \le n$

If now the order of f(a) is *m*, then

 $[f(a)]^m = f(e) \Rightarrow f(a)f(a)f(a)...m$ times = f(e)

 $\Rightarrow f(aaa...m \text{ times}) = f(e) \Rightarrow f(a^m) = f(e)$

$$\Rightarrow a^m = e$$

[:: f is one-one]

 \Rightarrow order of $a \le m$

Thus,
$$m \le n$$
 and $n \le m \Longrightarrow m = n$

If the order of *a* is infinite, then the order of f(a) cannot be finite. Because if the order of f(a) is finite and is equal to *m*, then we have $a^m = e$. Therefore the order of *a* is finite. Thus we get a contradiction.

5. The relation of isomorphism in the set of all groups.

Theorem: The relation of isomorphism in the set of all groups is an equivalence relation.

Proof: We shall prove that the relation of isomorphism denoted by \cong in the set of all groups is reflexive, symmetric and transitive.

Reflexive: If G is any group, then $G \cong G$. Let f be the identity mapping on G i.e., let $f: G \to G$ such that $f(x) = x, \forall x \in G$. Obviously f is one-one onto. Also if x, y are any elements of G, then f(x) = x and f(y) = y.

Also, f(xy) = xy [:: f is identity mapping]

$$= f(x)f(y)$$

 $\therefore f$ is composition preserving also. Thus f is an isomorphism on G onto G.

Hence, $G \cong G$

Symmetric [i.e. $G \cong G' \Longrightarrow G' \cong G$]. Suppose a group *G* is isomorphic to another group *G'*. Let *f* be an isomorphism of *G* onto *G'*. Then *f* is one-one onto and preserves compositions in *G* and *G'*. Since *f* is one-one onto, therefore, it is invertible i.e. f^{-1} exists. Also we know that the mapping f^{-1} is also one one onto.

Now we shall show that $f^{-1}: G' \to G$ is also composition preserving. Let x', y' be any elements of G'. Then there exist elements $x, y \in G$ such that

$$f^{-1}(x') = x, f^{-1}(y') = y$$
 ...(1)

and
$$f(x) = x', f(y) = y'$$
 ...(2)

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455 Now, $f^{-1}(x' \ y') = f^{-1}[f(x)f(y)]$ = $f^{-1}[f(xy)]$, since f(xy) = f(x)f(y)= xy

 $= f^{-1}(x')f^{-1}(y')$

 \therefore f^{-1} preserves compositions in G' and G.

Hence, $G' \cong G$.

Transitive [*i.e.*, $G \cong G', G' \cong G'' \Longrightarrow G \cong G''$]: Suppose G is isomorphic to G' and G' is isomorphic to G''. Further, suppose that $f: G \to G'$ and $g: G' \to G''$ are the respective isomorphic mappings. We know that the composite mapping $g \circ f: G \to G''$ defined by

 $(gof)(x) = g[f(x)]; \forall x \in G$

is also one-one onto if both f and g are one-one onto. Further, if x, y are any elements of G, then

(gof)(xy) = g[f(xy)][by definition of gof]= g[f(x)f(y)][$\because f$ is composition preserving]= g[f(x)]g[f(y)][$\because g$ is also an isomorphism]

$$= [(gof)(x)] [(gof)(y)]$$

Hence, gof preserves compositions in G and G''.

 \therefore gof is an isomorphism of G onto G'' and $G \cong G''$.

Hence, the relation of isomorphism in the set of all groups is an equivalence relation.

Note: The relation of isomorphism in the set of all groups will partition the set of all groups into disjoint equivalence classes. If G_1 is any group, then all the groups isomorphic to G_1 will form one equivalence class. If G_2 is another group not isomorphic to G_1 , then all the groups isomorphic to G_2 will form another equivalence class, and so on.

Example: Any finite cyclic group of order *n* is isomorphic to \mathbb{Z}_n . Any infinite cyclic group is isomorphic to \mathbb{Z} .

Example: The mapping from \mathbb{R} under addition to itself given by $\phi(x) = x^3$ is not an isomorphism. Although, ϕ is one-to-one and onto, it is not operation-preserving since it is not true that $(x + y)^3 = x^3 + y^3$ for x and y.

Example: $U(10) \neq U(12)$. This is a bit trickier to prove. First, note that $x^2 = 1$ for all x in U(12). Now, suppose that ϕ is an isomorphism from U(10) onto U(12). Then,

 $\phi(9) = \phi(3.3) = \phi(3)\phi(3) = 1$ and $\phi(1) = \phi(1.1) = \phi(1)\phi(1) = 1$

Thus, $\phi(9) = \phi(1)$, but $9 \neq 1$, which is a contradiction to the supposed one-to-one character of ϕ .

Example: There is no isomorphism from \mathbb{Q} , the group of rational numbers under addition, to \mathbb{Q}^* , the group of nonzero rational numbers under multiplication. If ϕ were such a mapping, there would be a rational number *a* such that $\phi(a) = -1$. But then

$$-1 = \phi(a) = \phi\left(\frac{1}{2}a + \frac{1}{2}a\right) = \phi\left(\frac{1}{2}a\right)\phi\left(\frac{1}{2}a\right) = \left[\phi\left(\frac{1}{2}a\right)\right]^2$$

However, no rational number squared is -1.

[From (2)]

[From (1)]

[by def. of f^{-1}]

Example: Let $G = SL(2, \mathbb{R})$, the group of 2×2 real matrices with determinant 1. Let M be any 2×2 real matrix with determinant 1. Then we can define a mapping from *G* to *G* itself by $\phi_M(A) = MAM^{-1}$ for all *A* in *G*. To varify that ϕ_{-1} is an isomorphism we carry out the four steps.

A in G. To verify that ϕ_M is an isomorphism we carry out the four steps.

Step 1: ϕ_M is a function from *G* to *G*. Here, we must show that $\phi_M(A)$ is indeed an element of *G* whenever, A is an element of G. This follows from properties of determinants:

 $det(MAM^{-1}) = (det M) (det A) (det M)^{-1} = 1.1.1^{-1} = 1.$

Thus, MAM⁻¹ is in G.

Step-2: ϕ_M is one-to-one. Suppose that $\phi_M(A) = \phi_M(B)$. Then MAM⁻¹ = MBM⁻¹ and, by left and right cancellation, A = B.

Step-3: ϕ_M is onto. Let B belong to G. We must find a matrix A in G such that $\phi_M(A) = B$. If such a matrix A is to exist, it must have the property that MAM⁻¹ = B. But this tells us exactly what A must be! For we can solve for A to obtain A = M⁻¹BM.

Step-4: ϕ_M is operation preserving. Let A and B belong to G. Then,

 $\phi_{\scriptscriptstyle M} \left(AB \right) = M(AB)M^{-1} = MA(M^{-1}M)BM^{-1}$

 $= (\mathbf{M}\mathbf{A}\mathbf{M}^{-1}) (\mathbf{M}\mathbf{B}\mathbf{M}^{-1}) = \phi_{M} (\mathbf{A})\phi_{M} (\mathbf{B})$

The mapping ϕ_M is called conjugation by M.

Theorem: Cayley's Theorem: Every group is isomorphic to a group of permutation.

Proof: To prove this, let G be any group. We must find a group G' of permutations that is isomorphic to G. Since G is all we have to work with, we will have to use it to construct G'. For any g in G, define a function T_g from G to G by $T_g(x) = gx$ for all x in G.

(In words, T_g is just multiplication by g on the left). T_g is a permutation on the set of elements of G. Now, let $G' = \{T_g \mid g \in G\}$. Then, G' is a group under the operation of function composition. To verify this, we

first observe that for any g and h in G we have $T_g T_h(x) = T_g (T_h(x)) = T_g (hx) = g(hx) = (gh)x = T_{gh}(x)$,

so that $T_g T_h = T_{gh}$. From this it follows that T_e is the identity and $(T_g)' = T_{g'}$. Since function composition is associative, we have verified all the conditions for G' to be a group.

The isomorphism ϕ between G and G' is now ready made. For every g in G, define $\phi(g) = T_g$. Clearly, g = h implies $T_g = T_h$, so that ϕ is a function from G to G. On the other hand, if $T_g = T_h$, then $T_g(e) = T_h(e)$ or ge = he. Thus, ϕ is one-to-one. By the way G' was constructed, we see that ϕ is onto. The only condition that remains to be checked is that ϕ is operation preserving. To this end let x and y belong to G. Then $\phi(xy) = T_{xy} = T_x T_y = \phi(x)\phi(y)$

The group G' constructed above is called left regular representation of G.

7. **Theorem: Properties of Isomorphisms:** Suppose that ϕ is an isomorphism from a group *G* onto a group *G'*. Then

- **1.** ϕ carries the identity of *G* to the identity of *G'*.
- 2. For every integer *n* and for every group element *a* in *G*, $\phi(a^n) = [\phi(a)]^n$
- **3.** For any elements a and b in G, a and b commute if and only if $\phi(a)$ and $\phi(b)$ commute.
- **4.** G is Abelian if and only if G' is Abelian.
- **5.** $|a| = |\phi(a)|$ for all *a* in *G* (isomorphisms preserve orders).

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

6.

6. G is cyclic if and only if G' is cyclic.

7. For a fixed integer k and a fixed group element b in G, the equation $x^k = b$ has the same number of solutions in G as does the equation $\phi(x^k) = \phi(b)$ in G'.

8. ϕ' is an isomorphism from *G'* onto *G*.

9. If *K* is a subgroup of *G*, then $\phi(K) = \{\phi(k) | k \in K\}$ is a subgroup of *G'*.

Proof: We will restrict ourselves to proving only properties 1, 2, and 5. Note, however, that property 4 follows directly from property 3, and property 6 directly from property 5. For convenience, let us denote

the identity in G by e_G , and the identity in G' by $e_{G'}$. Then $e_G = e_G e_G$ so that

 $\phi(e_G) = \phi(e_G e_G) = \phi(e_G)\phi(e_G)$

But $\phi(e_G) \in G'$, so that $\phi(e_G) = e_{G'}\phi(e_G)$, as well. Thus, by cancellation, we have $e_{G'} = \phi(e_G)$. This proves property 1.

For positive integers, property 2 follows from the definition of a homomorphism and mathematical induction. If *n* is negative, then-*n* is positive and we have from property 1 and the observation about the positive integer case that $e = \phi(e) = \phi(g^n g^{-n}) = \phi(g^n)\phi(g^{-n}) = \phi(g^n)(\phi(g))^{-n}$. Thus, multiplying both sides on the right by $(\phi(g))^n$, we have $(\phi(g))^n = \phi(g^n)$.

To prove property 5, we note that $a^n = e$ if and only if $\phi(a^n) = \phi(e)$. So, by properties 1 and 2, $a^n = e$ if and only if $(\phi(a))^n = e$. Thus, *a* has infinite order if and only if $\phi(a)$ has infinite order, and *a* has finite order *n* if and only if $\phi(a)$ has order *n*.

8. **Definition:** Automorphism: An isomorphism from a group G onto itself is called an automorphism of G. **Example:** The function ϕ from \mathbb{C} to \mathbb{C} given by $\phi(a+bi) = a-bi$ is an automorphism of the group of complex numbers under addition. The restriction of ϕ to \mathbb{C}^* is also an automorphism of the group of the nonzero complex numbers under multiplication.

Example: Let $\mathbb{R}^2 = \{(a,b) | a, b \in \mathbb{R}\}$. Then $\phi(a,b) = (b,a)$ is an automorphism of the group \mathbb{R}^2 under component-wise addition. Geometrically, ϕ reflects each point in the plane across the line y = x. More generally, any reflection across a line passing through the origin or any rotation of the plane about the origin is an automorphism of \mathbb{R}^2 .

- 9. Definition: Inner Automorphism induced by *a*: Let *G* be a group, and let $a \in G$. The function ϕ_a defined by $\phi_a(x) = axa^{-1}$ for all *x* in *G* is called the inner automorphism of *G* induced by *a*.
- **10.** Theorem: Aut(G) and Inn(G) Are Groups: The set of automorphism of a group and the set of inner automorphism of a group are both groups under the operation function composition.
- 11. **Theorem:** Aut(\mathbb{Z}_n) $\approx U(n)$: For every positive integer *n*, Aut(\mathbb{Z}_n) is isomorphic to U(n).

SOLVED EXAMPLES

(i). Let Aut (G) denote the group of automorphism of a group G, which one of the following is not a cyclic group. (a) Aut (\mathbb{Z}_4) (b) Aut (\mathbb{Z}_6) (c) Aut (\mathbb{Z}_8) (d) Aut (\mathbb{Z}_{10})

Soln. By theorem Aut $(\mathbb{Z}_n) \approx U(n)$

- (a) Aut $(\mathbb{Z}_4) \approx U(4) = \{1, 2\} \implies$ cyclic
- (b) Aut $(\mathbb{Z}_6) \approx U(6) = \{1, 5\} \implies$ cyclic

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

[GATE-2009]

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

	(c) Aut $(\mathbb{Z}_{+}) \approx U(8) = \{$	$[1 3 5 7] \rightarrow \text{not even}$	lic		
	Hence, correct option is (c).				
	Let Che a seclie and a Q then its second of sectors with the order				
(11).	(a) 2 (b) 4	up of automorphism nas (c) б	(d) 8	
					[GATE-2006]
Soln.	Let G be a cyclic group of	of order 8 then $G \approx \mathbb{Z}$	₈ by formula Aut (\mathbb{Z}_n)	$\approx U(n)$, so	
	Aut $(\mathbb{Z}_8) \approx U(8) = \{1, 3, \dots, N\}$	5,7}			
	So order of group of automorphism is 4.				
	Hence, correct option I	IS (D).			
(iii).	Let $(\mathbb{Z}, +)$ denote the group of the gro	oup of all integer unde	er addition. The number	of all automorphism	of $(\mathbb{Z}, +)$ is
	(a) 1 (b) 2	(c) 3	(d) 4	
Soln	To find number of isomo	rnhism from (7 +) to	$(\mathbb{Z} \rightarrow)$ then $n \rightarrow n = n$	$\rightarrow -n$ are only two	[GATE-2001]
50111.	To find number of isomorphism from $(\mathbb{Z}, +)$ to $(\mathbb{Z}, +)$ then $n \to n$, $n \to -n$ are only two isomorphism.				isomoi phism.
	So number of all automorphism of $(\mathbb{Z}, +)$ are 2. infact Aut $(\mathbb{Z}) \approx \mathbb{Z}_2$ Hence, correct option is (b)				
(iv)	The order of the sutom	arphism group of Kla	in's group is		
(1).	(a) 3	(b) 4	(c) 6	(d) 24	
					[D.U. 2014]
Soln.	Aut (K_4)				
	$\begin{pmatrix} e \\ a \\ b \\ c \end{pmatrix} \qquad \begin{pmatrix} e' \\ a' \\ b' \\ c' \end{pmatrix}$				
	a has three choices as a	a', b', c' and once a r	maps to any one of thes	se elements then for	b or c there are
	two remaining choices.				
	If we choose b then c is already fixed as $c = a \cdot b$.				
	Hence, total maps are :	$5 \times 2 = 6.$			

Hence, correct option is (c).

- (v). Which one of the following group is cyclic?
 - (a) The group of positive rational numbers under multiplication
 - (b) The dihedral group of order 30
 - (c) $\mathbb{Z}_3 \oplus \mathbb{Z}_{15}$
 - (d) Automorphism group of \mathbb{Z}_{10}

Soln. Aut $(\mathbb{Z}_{10}) \cong U(10) \cong \mathbb{Z}_4$.

Hence, correct option is (d).

[D.U. 2014]

92 **ISOMORPHISM** (vi). The logarithmic map from the multiplicative group of positive real numbers to the additive group of real number is (a) a one-to-one but not an onto homomorphism (b) an onto but not a one-to-one homomorphism (c) not a homomorphism (d) an isomorphism [D.U. 2014] An isomorphism Soln. $\phi: (\mathbb{R}^+, \cdot) \to (\mathbb{R}, +)$ defined by $\phi(a) = \log a$ let, $a, b \in \mathbb{R}^+$ then $\phi(a \cdot b) = \log(ab) = \log a + \log b$ $=\phi(a)+\phi(b)$ Group homomorphism Let $\phi(a) = 0 \Longrightarrow \log a = 0$ $\Rightarrow |a=1|$. Hence, identity maps to identity only $\Rightarrow \phi$ is 1-1. again, let $b \in (\mathbb{R}, +)$ then \exists an element e^b such that $\phi(e^b) = \log e^b = b \cdot \log e = b$ (as $\log e = 1$) $\Rightarrow \phi$ is onto Thus ϕ is an isomorphism. Hence, correct option is (d). If *f* is a group homomorphism from $(\mathbb{Z}, +)$ to $(\mathbb{Q} - \{0\}, \cdot)$ such that f(2) = 1/3, then the value f(-8) is (vii). (a) 81 (b) 1/81 (c) 1/27 (d) 27 [D.U. 2014] Given f is a group homomorphism from $f:(\mathbb{Z}, +) \to (\mathbb{Q} - \{0\}, \cdot)$ s.t. $f(2) = \frac{1}{3}$ then f(-8) = ?Soln. $f(2) = \frac{1}{3} \Longrightarrow f(-2) = 3$ [as inverse of $\frac{1}{3}$ in 3] $\Rightarrow f(-8) = f(-2 - 2 - 2 - 2) = f(-2) \cdot f(-2)$ $= 3 \cdot 3 \cdot 3 \cdot 3 = 81$ Hence, correct option is (a). (viii). The quotient group $Q_8 / \{1, -1\}$ is isomorphic to (b) $(\{1,-1\},\cdot)$ (c) $(V_4,+)$ (d) $(\mathbb{Z}_4,+)$ (a) (Q_{8}, \cdot) [D.U. 2014]

Soln. Since $\{1, -1\}$ is centre of the group Q_8 . Hence $Q_8/\{1, -1\}$ is a well defined group as $\{1, -1\}$ is normal subgroup of Q_8 . And also since $\{1, -1\}$ is not trivial.

$$\Rightarrow \frac{Q_8}{\{1,-1\}} \not\equiv Q_8$$

again
$$\Rightarrow \frac{Q_8}{\{1,-1\}} \not\equiv G$$
 where G is cyclic.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

93

Since for any group if $\frac{G_1}{H} \cong G_2$ where G_2 is cyclic $\implies G_1$ is abelian.

But since Q_8 is not an abelian, thus $\frac{Q_8}{\{1,-1\}}$ is not isomorphic to a cyclic group. Hence (b) and (d) are

incorrect.

Hence, correct option is (c).

- (ix). The quotient group \mathbb{R} / \mathbb{Z} is
 - (a) an infinite Abelian group
 - (b) cyclic
 - (c) the same as $\{r + \mathbb{Z} : 0 \le r < 1\}$
 - (d) isomorphic to the multiplicative group of all complex numbers of unit modulus

[D.U. 2014]

[D.U. 2015]

Soln. Since quotient group of an abelian group is also abelian and also \mathbb{R}/\mathbb{Z} is an infinite group isomorphic to the multiplicative group of all complex numbers of unit modulus. $\mathbb{R}/\mathbb{Z} = \{r + \mathbb{Z} : 0 \le r < 1\}.$

- (x). Which of the following pairs of groups are isomorphic to each other?
 - (a) $\langle \mathbb{Z}, + \rangle, \langle \mathbb{Q}, + \rangle$ (b) $\langle \mathbb{Q}, + \rangle, \langle \mathbb{R}^+, \cdot \rangle$
 - (c) $\langle \mathbb{R}, + \rangle, \langle \mathbb{R}^+, \cdot \rangle$ (d) Aut $(\mathbb{Z}_3),$ Aut (\mathbb{Z}_4) [D.U. 2014]

Soln. $\langle \mathbb{R}, + \rangle \cong \langle \mathbb{R}^+, \cdot \rangle$

 $f:(\mathbb{R},+)\to(\mathbb{R}^+,\cdot)$ defined by $f(x)=e^{x}$

f is 1 - 1 onto homomorphism

Also, $Aut(\mathbb{Z}_3) \cong U(3) \cong \mathbb{Z}_2$

also $Aut(\mathbb{Z}_4) \cong U(4) \cong \mathbb{Z}_2$ CAREER ENDEAVOUR

Hence, correct option are (c) and (d).

- (xi). The number of elements in the group $Aut \mathbb{Z}_{200}$ of all automorphisms of \mathbb{Z}_{200} is(a) 78(b) 80(c) 84(d) 82
- **Soln.** Aut $(Z_n) \cong U(n)$ and $|U(n)| = \phi(n)$

 \Rightarrow Aut $\mathbb{Z}_{200} = \phi(200)$

$$= \phi \cdot (2^3 \times 5^2) = \phi(2^3) \cdot \phi(5^2)$$

$$= (2^3 - 2^2) \cdot (5^2 - 5) = 4 \times 20 = 80$$

Hence, correct option is (b).

- (xii). Let G = U(32) and $H = \{1, 31\}$. The quotient group G/H is isomorphic to
 - (a) \mathbb{Z}_8 (b) $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ (c) $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ (d) The dihedral group D_4 [D.U. 2015]

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455 **Soln.** $U(32) \cong U(2^5) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$

94

$$\cong \mathbb{Z}_2 \oplus \mathbb{Z}_8$$

And also, $H = \{1, 31\} \cong \mathbb{Z}_2$

So,
$$\frac{G}{H} = \frac{\mathbb{Z}_2 \oplus \mathbb{Z}_8}{\mathbb{Z}_2} \cong \mathbb{Z}_8.$$

Hence, correct option is (a).

- (xiii). For a group G. Let Aut (G) denote the group of automorphism of G. Which of the following statement is true?
 - (a) Aut (\mathbb{Z}) is isomorphic \mathbb{Z}_2 (b) if G is cyclic then Aut (G) is cyclic
 - (c) if Aut (*G*) is trivial then *G* is trivial (d) Aut (\mathbb{Z}) is isomorphic to \mathbb{Z}

Soln. Automorphism on \mathbb{Z} are as follow $f : \mathbb{Z} \to \mathbb{Z}$; f(n) = n and $\phi(n) = -n$ Aut $(\mathbb{Z}) = \{f, \phi\} \approx \mathbb{Z}_2$ as \mathbb{Z}_2 is cyclic so f is identity map which is identity of Aut (\mathbb{Z}) , Aut (\mathbb{Z}) also cyclic. Hence, correct option is (a).

- (xiv). Any automorphism of the group ϕ under addition is of the form $x \mapsto qx$ for some $q \in \mathbb{Q}$. True or False?
- Ans. True
- **Soln.** Let *f* be isomorphism from \mathbb{Q} to \mathbb{Q} . Let $1 \to q$ for same $q \in \mathbb{Q}$ then $m \to mq$ for $m \in \mathbb{Z}$

$$\mathbb{Q} = \left\{ \frac{r}{s} ; r \in \mathbb{Z}, s \in \mathbb{Z} - \{0\}, \gcd(r, s) = 1 \right\}$$

Take $x \in \mathbb{Q} \Rightarrow x = \frac{r}{s}$ for some $r \in \mathbb{Z}$ and $s \in \mathbb{Z} - \{0\}$ then r = sx.

$$f(r) = sf(x)$$
 by property of isomorphism as $r \in \mathbb{Z}$ so $f(r) = rf(1) = rd$

 $\Rightarrow f(x) = \frac{r}{r}q = xq \; ; \; f(x) = xq \; i.e. \; x \rightarrow xq \; \text{DEAVOUR}$

Hence all the isomorphism of the form $x \rightarrow qx$ for some $q \in \mathbb{Q}$.

(xv). The automorphism group Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is abelian. True or False ?

Ans. False

Soln. Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2) \approx GL_2(\mathbb{Z}_2)$

 $GL_2(\mathbb{Z}_2)$ is non-abelian so Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is non-abelian.

12. First Isomorphism theorem : A homomorphism $f: G \to G'$ is a mapping that preserve group operation. i.e., $f(a * b) = f(a) * f(b) \forall a, b \text{ in } G$

Kernal of homomorphism $f: G \to G'$ is defined as the set $\{x \in G \mid f(x) = e' \text{ where } e' \text{ is identity of } G\}$ denoted ker ϕ .

Let f be a group homomorphism from G to G' then $\frac{G}{\ker \phi} \approx \phi(G)$.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

[TIFR-2013]

ISOMORPHISM SOLVED EXAMPLES (i). Let G be additive group of integer I and G' be the multiplicative group of the fourth root of unity. Let $f: G \to G'$ be a homomorphism mapping given by $f(n) = i^n$ where $i = \sqrt{-1}$ then the kernal of f is given by (a) empty set (b) $\{4m : m \in I\}$ (c) $\{(2m)^2 + 1 : m \in I\}$ (d) $\{2m+1: m \in I\}$ [GATE-2000] $\ker f = \{x \in G \mid f(x) = 1 \text{ in } G'\} = \{x \in G \mid f(x) = i^x = 1 \text{ in } G'\}$ Soln. \Rightarrow ker $f = \{x \in G \mid x = 4m : m \in \mathbb{Z}\}$ Hence ker $f = \{4m : m \in I\}$ Hence, correct option is (b). (ii). Consider the group homomorphism $\phi: M_2(\mathbb{R}) \to (\mathbb{R})$ given by $\phi(A) = \text{trace}(A)$, then kernal of ϕ is isomorphic to which of the following group (a) $\frac{M_2(\mathbb{R})}{\{A \in M_2(\mathbb{R}) | \phi(A) = 0\}}$ (b) \mathbb{R}^2 (c) \mathbb{R}^3 (d) $GL_2(\mathbb{R})$ [GATE-2014] By definition kernal of $\phi = \{A \in M_2(\mathbb{R}) | \phi(A) = 0\}$, then by first homomorphism theorem Soln.

Let *G* be group with the generators *a* and *b* given by $G = \langle a, b; a^4 = b^2 = 1, ba = a^{-1}b \rangle$. If *Z*(*G*) denotes the center of *C* then $C \mid Z(G)$ is isomorphic to (iii). center of G then $G \mid Z(G)$ is isomorphic to

 $\Rightarrow \quad \frac{G}{\ker \phi} \approx \mathbb{R} \text{ and } M_2(\mathbb{R}) \approx \mathbb{R}^4, \text{ So } \frac{\mathbb{R}^4}{\ker \phi} \approx \mathbb{R} \Rightarrow \ker \phi \approx \mathbb{R}^3$

(b) C_2 , the cyclic group of order 2 (a) The trivial group (c) $C_2 \times C_2$ (d) C_{4}

 $G \approx D_4$. Dihedral group of order 8 then |Z(G)| = 2 so $O\left(\frac{G}{Z(G)}\right) = \frac{8}{2} = 4$. Soln.

 $\frac{G}{Z(G)} \approx H, H$ is a group of order 4. So $\frac{G}{Z(G)} \approx C_2 \times C_2$ and C_4 .

If $\frac{G}{Z(G)} \approx C_4$ then G is abelian but this is contradiction as G is non-abelian so $\frac{G}{Z(G)} \approx C_2 \times C_2$.

Hence, correct option is (c).

 $\frac{G}{\ker \phi} \approx \phi(G)$ as ϕ is onto so $\phi(G) = \mathbb{R}$

Hence, correct option is (c).

The number of group homomorphism from \mathbb{Z}_3 to \mathbb{Z}_9 are_____. [GATE-2003] (iv). (3)Ans.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

[GATE-2006]

The number of group homomorphism from \mathbb{Z}_m to \mathbb{Z}_n is gcd(m, n). So gcd(3, 9) = 3. Soln.

- There are *n*-homomorphism from the group $\frac{\mathbb{Z}}{n\mathbb{Z}}$ to the additive group of rational Q. True or False ? (v).
- False Ans.

Let f be any homomorphism from $\frac{\mathbb{Z}}{n\mathbb{Z}}$ to \mathbb{Q} . Soln.

> $f: \frac{\mathbb{Z}}{n^{\mathbb{Z}}} \to \mathbb{Q}$ then $0 \to 0$. let $1 \to a$ then by property of homomorphism O(a)/n but as $a \in \mathbb{Q}$ as in \mathbb{Q} no element has finite order than 0 in addition. So only trivial homomorphism exist. Hence statement is false.

There exist a non-trivial group homomorphism from S_3 to $\frac{\mathbb{Z}}{3\mathbb{Z}}$. True or False ? (vi).

Ans. False

- $S_3 \rightarrow \mathbb{Z}_3 = \{0, 1, 2\}$. Let $(1) \rightarrow 0$, $(12) \rightarrow a \implies o(a)|2$, there is no a in \mathbb{Z}_3 such that o(a) = 2. So only Soln. homomorphism is trivial homomorphism.
- Let $G = R \{0\}$ and $H = \{-1, 1\}$ be the group under multiplication. Then the map $\phi: G \to H$ defined by (vii).

$$\phi(x) = \frac{x}{|x|}$$
 is

- (a) not a homomorphism
- (b) a H homomorphism which is not onto
- (c) an onto homomorphism which is not one-one
- (d) an isomorphism

Check homomorphism $\phi: G \to H$, consider $\phi(xy) = \frac{xy}{|\dots|}$ $\frac{y}{|y|} \forall x, y \in G = \phi(x) \cdot \phi(y)$ Soln.

 ϕ is operation preserving

For onto: ϕ is clearly onto every x > 0 will work for 1 and every x < 0 will work for -1.

For one-one: Let

$$\ker \phi = \{x \in G \mid \phi(x) = 1 \text{ in } H\}$$

$$= \{ x \in G \mid \frac{x}{|x|} = 1 \text{ in } H \}$$

 $= \{x \in G \mid x > 0\} \neq \{e\} \text{ of } G$

Hence ϕ is not one-one as ker ϕ is not trivial.

Hence, correct option is (c).

- Consider the following statement P and Q (viii).
 - P: If H is a normal subgroup of order 4 of symmetric group S_4 then S_4/H is abelian
 - Q : If $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ is quaternion group then $Q|_{\{-1,1\}}$ is abelian

Which of the following is true?

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

[TIFR-2011]

[TIFR-2011]

	·				
	(a) both P and Q	(b) only P	(c) only Q	(d) neither $P \operatorname{nor} Q$	[GATE-2016]
Soln.	(i) $\frac{Q_8}{\{1,-1\}} \cong G'$ the	$ G' = \frac{8}{2} = 4$ and e	every group of order 4 is ab	belian $\Rightarrow Q$ is true.	
	(ii) $\frac{S_4}{H} \cong G' = \frac{24}{4} =$	6 then G' is non at	belian.		
	Hence, correct opt	ion is (c).			
(ix).	Let G be a group wh	ose presentation is	$G = \{x, y \mid x^5 = y^2 = e, x^2\}$	$f^2 y = y x$, then <i>G</i> is ison	norphic to
	(a) Z ₅	(b) \mathbb{Z}_{10}	(c) \mathbb{Z}_2	(d) Z ₃₀	[GATE-2016]
Soln.	Given that, $G = \{x, y\}$ Hence, correct opti	$y x^5 = y^2 = e, x^2 y$ ion is (c).	= y x, in the group G only	y satisfy the given condi	tion by \mathbb{Z}_2
(x).	The number of group $(a) = 1$	homomorphisms f	rom the symmetric group S	f_3 to the additive group $\frac{7}{2}$	$\mathbb{Z}/6\mathbb{Z}$ is
	(a) 1	(6) 2	(C) 3	(d) 0 [CSIR	-NET-2013-(II)]
Soln.	The normal subgroup of S_3 are $\{e\}$ and A_3 . We know that the kernal of homomorphism is normal subgroup.				
	: Number of group	p homomorphism fr	from S_3 to $\frac{\mathbb{Z}}{6\mathbb{Z}}$ is 2.		
	Hence, correct opti	ion is (b).			
(xi).	The number of non-tr	rivial ring homomor	phism from \mathbb{Z}_{12} to \mathbb{Z}_{28} is	S	
	(a) 1	(b) 3	(c) 4	(d) 7	P.NFT.2012.(I)]
Soln.	Given that, $f:\mathbb{Z}_{12}$ -	$\rightarrow \mathbb{Z}_{28}$ and idempote	tent element in \mathbb{Z}_{28} is {0, 1	1, 8, 21, then make the	order same both
	side. i.e., $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{28}$, {0, 1, 8, 21} 12×7 28×3 CARCER ENDEAVOUR				
	7 0, 7/1, 7/8,	7 21			
	Therefore, number of	f ring homomorphis	m $f: \mathbb{Z}_{12} \to \mathbb{Z}_{28}$ is 2, but n	number of non-trivial ring	g homomorphism
	is 1. Hence, correct opti	ion is (a).			
(xii).	Let G be a group of	order 77. Then the	center of G is isomorphic to	0	
	(a) \mathbb{Z}_1	(b) \mathbb{Z}_7	(c) \mathbb{Z}_{11}	(d) \mathbb{Z}_{77}	NET 2011 (I)]
Soln.	$o(G) = 77 = 7 \cdot 11$ bu	$\operatorname{at} 7 \not\models (11 - 1) \Rightarrow G$	is abelian	[CSII	~ -1 4E 1-2011-(1)]
	\Rightarrow Z(G) = G				
	$\Rightarrow Z_{77}$				
	Hence, correct opti	ion is (d).			

(xiii). Suppose G is group of order 29, then which of the following is true ?(a) G is not abelian

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

97

98	ISOMORPHISM				
	(b) G has no subgroup other than $\{e\}$ and G				
	(c) There is a group H of order 29 which is not isomorphic of G (1) G (1) G (1) G (2)				
	(d) G is a subgroup of a group of order 30	[CSIR-NE1/JRF : 2002]			
Soln.	O(G) = 29, which is prime				
	We know that every group of prime order are cyclic and every positive diviso	or of G is subgroup of G. So			
	positive divisor of G is 1, 29				
	\Rightarrow G has only two subgroup one is identity and another is G itself.				
	Hence, correct option is (b).				
	\bigcirc				

(xiv). Consider the group $G = \frac{Q}{Z}$ where Q and Z are the groups of rational numbers and integers respectively. Let

(b) yes, a unique one

[CSIR-NET/JRF : June-2012]

n be a positive integer. Then is there a cyclic subgroup of order n?

- (a) not necessarily
- (c) yes, but not necessarily a unique one (d) never
- **Soln.** Every proper subgroup of \mathbb{Q}/\mathbb{Z} is cyclic and unique.

Hence, correct option is (b).

Some Important Theorems

- **1.** Every infinite cyclic group $G = \langle a \rangle$ isomorphic to $(\mathbb{Z}, +)$.
- 2. Every finite cyclic group $G = \langle a \rangle$ of order *n* is isomorphic to $(\mathbb{Z}_n, +_n)$.
- 3. Let G and G' are two cyclic group of same order then they are isomorphic and isomorphism is which map generator of G onto generator G'.
- 4. A group G is abelian iff $f(x) = x^{-1}$ is an automorphism.
- 5. Every odd order abelian group has non-trivial automorphism, namely $f(x) = x^{-1} \forall x \in G$.

Important properties of Homomorphism/Isomorphism

- 6. Let G be a group Aut (G) set of all automorphism is subgroup of S_G group of permutation on G under composition of function.
- 7. Inn (G), set of all inner automorphism is normal subgroup of Aut (G).
- 8. Corresponding elements of centre Z(G) of G there is only one inner automorphism which is identity map.
- 9. Index of centre Z(G) = O(Inn(G))

10. Let G be a finite group and Z(G) be centre of G then $\frac{G}{Z(G)} \cong Inn(G)$.

- 11. If G is an abelian then identity function is only the inner automorphism G onto itself.
- **12.** *G* is abelian iff the function $f: G \to G$ such that $f(x) = x^2 \quad \forall x \in G$ is a homomorphism.
- **13.** G abelian group $f(x) = x^n$, $\forall x \in G$. Homomorphism for each $n \in \mathbb{N}$.
- **14.** If G/Z(G) is cyclic then G is abelian.

PRACTICE SET - 5

Multiple Correct Answer Type Questions :

- 1. Choose the incorrect statement(s)
 - (a) The class of all automorphisms of a group contains the class of all isomorphism of the group.
 - (b) The class of all isomorphism of a group contains the class of all homomorphism of the group.
 - (c) The class of all homomorphism of a group contains the class of all onto homomorphisms of the group.
 - (d) The class of all onto homomorphism on a group contains the class of all onto functions of the group.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

- For the following pair of groups which one is homomorphism 2.
 - (a) f(x) = -x, where $f: (\mathbb{R}, +) \longrightarrow (\mathbb{R}, +)$
 - (b) $f(x) = x^2$, where $f: (\mathbb{R} \{0\}, \bullet) \longrightarrow (\mathbb{R}, +)$
 - (c) f(x) = x + 1, where $f: (\mathbb{Z}, +) \longrightarrow (\mathbb{Z}, +)$
 - (d) $f(x) = \frac{x}{a} (q \neq 0 \text{ is whole number}), \text{ where } f(\mathbb{Z}, +) \longrightarrow (\mathbb{Q}, +)$
- 3. Select the correct statements :
 - (a) If Aut $(G_1) \cong$ Aut (G_2) and G_1 is infinite group then G_2 is also infinite.
 - (b) If Aut $(G_1) \cong$ Aut (G_2) and G_1 is finite then G_2 is also finite.
 - (c) $G_1 \not\cong G_2$ then Aut $(G_1) \not\cong$ Aut (G_2)
 - (d) If Aut (G_1) non abelian then G_1 non cyclic.
- Let $G = \mathbb{R} \{0\}$ and $H = \{-1, 1\}$ be groups under multiplication, then the map $\phi: G \to H$ defined by 4.

$$\phi(x) = \frac{x}{|x|}$$
 is

- (b) A one-one homomorphism which is not onto. (a) Not a homomorphism.
- (c) An onto homomorphism, which is not one-one. (d) An isomorphism.
- Which statement is/are correct 5.
 - (a) Two cyclic groups of same order are isomorphic.
 - (b) Isomorphic image of a cyclic group is isomorphic.
 - (c) Two non-abelian groups of order 8 are isomorphic.
 - (d) None of these.
- Let $A = \{f : Q_8 \to S_3 : f \text{ is a homomorphism}\}$ and 6.

 $B = \{f : Q_8 \to S_3 : | f \text{ is a one one homomorphism}\}, C = \{f : Q_8 \to S_3 : | f \text{ is a onto homomorphism}\}$ then

(a)
$$|A| = 10$$
 (b) *B* is empty (c) *C* is empty (d) $|A| = 6$
Single Correct Answer Type Questions :

- 7. Let G be a cyclic group of order n with β as a generator. Let m be a positive integer greater than one, less than *n* and relatively prime to *n*. Let *f* be a mapping defined on *G* by setting $f(\beta) = \beta^m \quad \forall \quad \beta \in G$, then choose correct statement
 - (a) f is a homomorphism, but not an isomorphism
 - (b) f is a not homomorphism
 - (c) f is inner automorphism
 - (d) f is an automorphism, but not an inner automorphism
- 8. Let $H = \mathbb{Z}_2 \times \mathbb{Z}_6$ and $K = \mathbb{Z}_3 \times \mathbb{Z}_4$ then
 - (a) *H* is isomorphic to *K* since both are cyclic
 - (b) *H* is not isomorphic to *K* since, *K* is cyclic where *H* is not.
 - (c) *H* is not isomorphic to *K* since there is no homomorphism from *H* to *K*.
 - (d) None of these

100		ISOMORPHISM				
9.	Let \mathbb{Z} be the grou	Let \mathbb{Z} be the group of integers under addition then Aut(\mathbb{Z}) is isomorphic to				
	(a) \mathbb{Z}_2	(b) Z	(c) $\mathbb{Z} \times \mathbb{Z}$	(d) $\mathbb{Z}_2 \times \mathbb{Z}_2$		
10.	Let ϕ be a homom $g \in G$.	10rphism from a finite gro	oup G into the group C* o	f non-zero complex numbers. Then for all		
	(a) $\phi(g) = 1$		(b) $ \phi(g) = 1$			
	(c) $\phi(g)$ is purely imaginary		(d) $\phi(g)$ is real	(d) $\phi(g)$ is real		
11.	Number of homo	morphism from \mathbb{Z}_{6k} (k	$\in \mathbb{N}$ fixed) into <i>G</i> is non <i>a</i>	ubelian group of order 6.		
	(a) 6	(b) $k \cdot \phi(6)$	(c) $6 \cdot \phi(k)$	(d) $6 \cdot \phi(6)$		
12. $f: (\mathbb{Q}, +) \longrightarrow (\mathbb{Q}, +)$ where $(\mathbb{Q}, +)$ is additive abelian group of rational number if f is phism, then				ational number if f is non trivial homomor-		
	(a) $f ext{ is } 1 - 1$	(b)f is onto	(c) f is bijective	(d) Neither $1-1$ nor onto		
	Numerical Answer Type Questions:					
13.	Number of one-c	Number of one-one homomorphism from $\mathbb{Z}_n \to \mathbb{Z}$, where $(n > 2) = ??$				
14.	Number of homomorphism from \mathbb{Z} onto S_n where $(n > 2) = ??$					
15.	Number of subgroups which is isomorphic to $\mathbb{Z} = ??$					
16.	$ \operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) = ??$					
17.	Number of homomorphism from \mathbb{Z}_9 into \mathbb{Z}_6 are = ??					
18.	Number of groups upto isomorphic of order 122.					
19.	Number of groups upto isomorphic of order 15.					
20.	Order of inner au	Order of inner automorphism for $S_3 = ??$				
	SOLUTIONS PRACTICE SET - 5					
	Multiple Correc	Multiple Correct Answer Type Questions :				
1.	(a), (b), (c)					
2.	(a) and (d)					

Since (b) discarded by $f(x + y) \neq f(x) + f(y)$ and (c) discarded because identity does not go to identity.

3. (d)

Since $\mathbb{Z} \not\cong \mathbb{Z}_4$ But Aut $(\mathbb{Z}) \cong$ Aut $(\mathbb{Z}_4) \cong \mathbb{Z}_2$

4. (c) as $\begin{pmatrix} 1 \rightarrow 1 \\ -1 \rightarrow 1 \end{pmatrix}$

5. (a), (b

(a), (b) Since Q_8 and D_4 both are of same order but not isomorphic to each other.

6. (a), (b) and (c)

Single Correct Answer Type Questions :

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

- **7.** (d)
- 8. (b), $H = \mathbb{Z}_2 \times \mathbb{Z}_6$ and $K = \mathbb{Z}_3 \times \mathbb{Z}_4$ are not isomorphic since *H* is not cyclic but *K* is cyclic
- **9.** (a), \mathbb{Z}_2
- 10. (b) $|\phi(g)| = 1$, since every elements of a finite group has order finite and on which they mapped by ϕ also has order finite. And in \mathbb{C} * each elements of order finite iff |x| = 1.
- **11.** (a)
- **12.** (a), (b), (c)

Numerical Answer Type Questions

- 13. '0' since in \mathbb{Z} there is no elements of finite order other than zero element.
- **14.** Zero, since \mathbb{Z} is cyclic and S_n is non-cyclic.
- 15. Infinite; infact every subgroup except '0' subgroup always isomorphic to \mathbb{Z} .
- **16.** 6 since Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3$
- **17.** 3
- 18. 2 $O(G) = 122 = 2 \times 61 = p \times q$ form, total number of non isomorphic groups of order 122 = 2 i.e., \mathbb{Z}_{pq} and D_q
- **19.** 1 since 3/(5-1) (break p.q. form)
- **20.** 6 since $inn(S_3) \cong S_3$

