

Consider the following system of *m* linear equation in *n* unknowns over a field *F*

$$
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mm}x_n = b_m
$$

\nThis system can be written as $Ax = b$
\n
$$
\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

\nThe *m*×*n* matrix *A* is called the coefficient matrix

n matrix *A* is called the coefficient matrix

- (a) If $b = 0$ then the system is called homogeneous otherwise it is called non homogeneous.
- (b) A system of linear equations is called consistent if there exist $x_1 \in F^n$ such that $Ax_1 = b$ otherwise it is called inconsistent.

- (c) The $m \times (n + 1)$ matrix $[A:b]$ is called the augmented matrix of the system.
- (d) Two system $Ax = b$ and $A'x = b'; A, A' \in F^{m \times n}$, $b, b' \in F^m$ are said to be equivalent if they have the same set of solutions.

Homogeneous System :

Consider a homogeneous system $Ax = 0$... (1)

Clearly $x_1 = x_2 ... = x_n = 0$ *i.e* $x = 0$ is a solution of (1). Therefore it is always a consistent system and this solution is called trivial solution of (1).

Again if x_1 and x_2 are two solution of (1)

Then their linear combination $k_1x_1 + k_2x_2$, where $k_1, k_2 \in F$ is also a solution of (1).

and

Therefore the collection of all the solutions of the system of equations $Ax = 0$ form a subspace of the *n*-dimensional vector space.

Theorem: The number of linear independent solution of *m* homogeneous linear equations in *n* variables,

 $Ax = 0$ is $(n - r)$, where *r* is the rank of the matrix *A*. Hence dimension of solution space is *n-r.*

Consider the system $Ax = 0$

Where 11 \mathbf{u}_{12} \cdots \mathbf{u}_{1n} \mathbf{u}_{1n} 21 u_{22} \cdots u_{2n} \cdots u_{2n-1} \cdots u_{2n-2} 1 u_{m2} \cdots u_{mn} \perp _{m \times n} \cdots \perp \sim _{n \perp n \perp n \perp} *n n* m_1 u_{m2} \cdots u_{mn} \perp _{*m*×*n*} \cdots \perp ^{*n*}_{*n*} \perp a_{11} a_{12} ... a_{1n} x_1 a_{21} a_{22} ... a_{2n} x_2 $A = \begin{bmatrix} 2I & 2I & \cdots & 2I \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ and x a_{m1} a_{m2} \ldots a_{mn} \ldots x_{n} \ldots x_{n} $a_{11} \quad a_{12} \quad \dots \quad a_{1n} \quad | \quad x_1 \quad |$ $\begin{array}{ccc} \begin{array}{ccc} a & a & a \end{array} & \begin{array}{ccc} \end{array} &$ $=$ $\begin{array}{ccc} -21 & -22 & -2n \\ -2 & -2 & -2n \end{array}$ and $x =$ $\begin{bmatrix} a_{m1} & a_{m2} \end{bmatrix}$ \ldots $\begin{bmatrix} a_{mn} \end{bmatrix}_{m \times n}$ $\begin{bmatrix} x_n \end{bmatrix}_{n \times n}$ $\frac{1}{2}$ $\frac{1}{2}$

Case –I : If $n \leq m$

(a) If Rank $(A) = n$, then the system has only trivial solution.

(b) If $r = \text{rank}(A) < n$, then the system has infinite number of solutions and the dimension of solution space is *n*-*r.*

Case -II If $m < n$

(a) If Rank $(A) = m$, then the solution space is of *n*-*m* dimension.

(b) If $r = Rank(A) < m$, then the system has infinite number of solutions and the dimension of solution space is *n*-*r.*

Non- Homogeneous system :

Consider the system $Ax = b$

Where
$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}
$$
, $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ **W**

Theorem:

The system of equation $Ax = b$ is consistent if and only if the coefficient matrix *A* and the augmented matrix [*A*:*b*] are of the same rank.

Case - **I** If $m = n$

(a) If Rank $(A) = m = n$ then the system is always consistent and has unique solution.

(b) If $r = Rank(A) < m = n$ then the system has solution if *b* can be written as linear combination of columns of *A* and has infinite solutions.

If *b* can not be written as linear combination of columns of *A* then the system has no solution

Case -II If $m < n$

(a) If $Rank(A) = m < n$, then the system always have infinite number of solutions.

(b) If $Rank(A) < m < n$ then the system has infinite number of solutions if *b* can be written as linear

[(SCQ) CSIR-NET/JRF : June-2010]

combinations of columns of *A* otherwise it does not have any solution.

Case-III if $n < m$

(a) If $Rank(A) = n < m$, then the system has unique solution if *b* can be written as linear combination of columns of *A*.

(b) If $Rank(A) < n < m$, then the system has infinite number of solutions if *b* can be written as linear combination of columns of *A* otherwise it is inconsistent.

SOLVED PROBLEMS

1. Let $x + y + z = 0$, $x - y - z = 0$ then the number of solution of this system of equation is

-
- (c) finitely many but greater than 2 (d) none of these
- (a) unique (b) infinitely many
	-

Soln. We have

 $x + y + z = 0$...(i)

$$
x-y-z=0
$$

Solving these we get $x = 0$ and $y + z = 0 \implies y = -z$ and $x = 0$. Hence, there is infinitely many solution. **Correct option is (b).**

- **2.** Consider the system of equations $AX = 0$, $BX = 0$ where A and B are $n \times n$ matrices and X is a $n \times 1$ matrix. Which of the following statements are true. **[HCU-2010]** [HCU-2010]
	- (i) det(A) = det(B) implies that the two systems have the same solutions
	- (ii) The two systems have the same solutions implies $det(A) = det(B)$

x \overrightarrow{ii}

- (iii) $\det(A) = 0 \neq \det(B)$ implies that the two systems can have different solutions
- (a) All are true (b) (i) is true
- (c) (iii) is true \bigcap \bigcap

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ **Soln.**(i) Consider $A = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ 3×3 2×3 $1 \t0 \t0$ 0 0 0 0 0 0 | and $B = |0 \t1 \t0$ $0 \t 0 \t 0 \t 1_{3\times 3}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}_{3\times 3}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ and $R = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}_{3\times 3}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}_{3\times 3}$

Clearly $det(A) = det(B) = 0$

Now,
$$
AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
\Rightarrow x_1 = 0
$$

$$
\Rightarrow \text{Solution set of } AX = 0 \text{ is } \{(0, x_2, x_3) | x_2, x_3 \in \mathbb{R}\}\
$$

Now
$$
BX = 0 \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_2 = x_3 = 0
$$

 \Rightarrow Solution set for *BX* = 0 is {($x_1, 0, 0$) | $x_1 \in \mathbb{R}$ }

Hence (i) is incorrect.

(ii) If det(A) = 3 and det (B) = 4.

 $AX=0$ and $BX=0$ has unique trivial solution. Hence solutions of the system $AX=0$ and $BX=0$ are the same, but $\det(A) \neq \det(B)$

Hence (ii) is incorrect.

(iii) If det $(A) = 0$ and $\det(B) \neq 0$ then the system $AX = 0$ have more than one solution and the system $BX = 0$ always have unique trivial solution. Thus the two systems have different solutions.

Hence (iii) is correct

Correct option is (c)

- **3.** Let *A* be a 4×4 real matrix. Which of the following 4 conditions is not equivalent to the other 3?
	- (a) The matrix *A* is invertible [HCU-2011]
	- (b) The system of equations $Ax = 0$ has only trivial solution
	- (c) Any two distinct rows *u* and *v* of *A* are linearly independent
	- (d) The system of equations $Ax = b$ has a unique solution $\forall b \in \mathbb{R}^4$

$$
\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}
$$

Soln. Consider $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$

1 1 2 $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$

Clearly any two rows of A are linearly independent. But $det(A) = 0$

 \Rightarrow *A* is not invertible

 $\Rightarrow Ax = 0$ has more than one solution

Correct option is (c)

4. The system of equations $6x_1 - 2x_2 + 2\alpha x_3 = 1$ and $3x_1 - x_2 + x_3 = 5$ has no solution if α is equal to

(a) -5
$$
(b)
$$
 -1 (c) 1 (d) 5 $[HCU-2016]$

 -1 1 : 5 **Soln.** Consider 6 -2 2α : 1 $[A:b]$ $3 -1 \quad 1 : 5$ $A : b] = \begin{bmatrix} 6 & -2 & 2a & 1 \\ 2 & 1 & 1 & 5 \end{bmatrix}$ $=\begin{bmatrix} 3 & -1 & 1 & 5 \end{bmatrix}$

Apply
$$
R_2 \rightarrow R_2 - \frac{1}{2}R_1
$$
, we have
\n
$$
[A:b] = \begin{bmatrix} 6 & -2 & 2\alpha & \vdots & 1 \\ 0 & 0 & 1-\alpha & \vdots & \frac{9}{2} \end{bmatrix}
$$

2 $\begin{bmatrix} 2 \end{bmatrix}$ The system has no solution if $1 - \alpha = 0 \implies \alpha = 1$

Correct option is (c)

- **5.** Let *A* be a 5×5 real matrix. Suppose 0 is one of eigenvalues of *A*. Which of the following statement is true?
	-
	- (c) $AX = 0$ has a non-trivial solution (d) none of the above **[HCU-2018**]
	- (a) System $AX = 0$ has unique solution (b) System $AX = C$ has unique solution for any C
- **Sol.** If 0 is one of the eigen value of *A*

 \Rightarrow det (*A*) = 0 \Rightarrow *AX* = 0 has a non trivial solution

Correct option is (c)

Soln. Consider 1 2 3 $1 -2 1$: $[A:b] = | 2 \t1 \t1 \t:$ $0 \t 5 \t -1$: *y* $A : b] = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ *y* $\begin{vmatrix} 1 & -2 & 1 & \vdots & y_1 \end{vmatrix}$ $=\begin{vmatrix} 2 & 1 & 1 & \vdots & y_2 \end{vmatrix}$ $\begin{bmatrix} 0 & 5 & -1 & \vdots & y_3 \end{bmatrix}$

Apply, $R_1 \rightarrow R_2 - 2R_1$, we have

$$
[A:b] = \begin{bmatrix} 1 & -2 & 1 & \vdots & y_1 \\ 0 & 5 & -1 & \vdots & y_2 - 2y_1 \\ 0 & 5 & -1 & \vdots & y_3 \end{bmatrix}
$$

Apply, $R_3 \rightarrow R_3 - R_2$, we have

$$
[A:b] = \begin{bmatrix} 1 & -2 & 1 & \vdots & & & y_1 \\ 0 & +5 & -1 & \vdots & & y_2 - 2y_1 \\ 0 & 0 & 0 & \vdots & y_3 - y_2 + 2y_1 \end{bmatrix}
$$

Thus the system has a solution if $2y_1 - y_2 + y_3 = 0$

Correct option is (b)

- ww.careerendeavour.com $x + 4y + 3z = 0$ $x + 3y + 4z = 0$ $x + 2y + 5z = 0$ does have (a) no solution (b) infinitely many solutions (c) more than one but finitely many solutions (d) exactly one solution. **Soln.** Consider 1 4 3 1 3 4 1 2 5 *A* $\begin{vmatrix} 1 & 4 & 3 \end{vmatrix}$ $=\begin{vmatrix} 1 & 3 & 4 \end{vmatrix}$ $\begin{bmatrix} 1 & 2 & 5 \end{bmatrix}$ Apply, $R_2 \rightarrow R_2 - R_1$; $R_3 \rightarrow R_3 - R_1$, we have 1 4 3 $0 \t -1 \t 1$ $0 \t -2 \t 2$ *A* $\begin{vmatrix} 1 & 4 & 3 \end{vmatrix}$ $=\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & -2 & 2 \end{bmatrix}$ Apply, $R_3 \rightarrow R_3 - 2R_2$, we have 1 4 3 $0 - 1 - 1$ 0 0 0 *A* $\begin{vmatrix} 1 & 4 & 3 \end{vmatrix}$ E E E E $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ \Rightarrow Rank(*A*) = 2 < 3
	- \Rightarrow The system has infinitely many solution.

Correct option is (b)

9. Consider the following system of linear equations **[HCU-2012]**

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{15}x_5 = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{25}x_5 = b_2
$$

\n
$$
\vdots
$$

\n
$$
a_{81}x_1 + a_{82}x_2 + \dots + a_{85}x_5 = b_8
$$

A vector $(\lambda_1, \lambda_2, ..., \lambda_5) \in \mathbb{R}^5$ is said to be a solution of the system if $x_i = \lambda_i$, $i = 1,2...$, 5 satisfies all the equations. Then

(a) If the system of equations has only finitely many solutions then it has exactly one solution

- (b) If all the b_i 's are zero then the set of solutions of the system is a subspace of \mathbb{R}^5 .
- (c) A system of 8 equations in 5 unknowns is always consistent
- (d) If the system of equations has a unique solution then the rank of the matrix $[a_{ii}]$ must be 5.

8. Following system of linear equations **[CUCET-2017]**

- **Soln.** (a) If the field is inifinite then we come across only three cases which are
	- (i) No solution (ii) Infinite solution (iii) Unique solution

Thus if the system of equations has only finitely many solutions. Then it has to be unique. Thus option (a) is correct.

- (b) If the system $AX = b$, $A = [a_{ij}]_{m \times n}$ is homogeneous then the solution set is subspace of F^n .
- \Rightarrow option (b) is correct.
- (c) Consider the system $AX = b$, where

Clearly Rank $(A) \neq$ Rank $([A:b])$

- \Rightarrow The system $AX = b$ has no solution
- \Rightarrow Option (c) is incorrect
- (d) If the system $AX = b$, $A = [a_{ij}]_{m \times n}$ has unique solution then rank of *A* is always *n*.
- \Rightarrow Option is (d) is correct.

Correct option are (a), (b), (d)

- **10.** Consider a linear system of equations $A\vec{x} = b$ $\frac{1}{\sqrt{1}}$ where *A* is a 3×3 matrix and $b \neq 0$ \rightarrow . Suppose the rank of the matrix of coefficients $A = (a_{ij})$ is equal to 2 then [HCU-2015]
	- (a) there definitely exists a solution of the system of equations
	- (b) there exists a non-zero column vector \vec{v} in \mathbb{R}^3 such that $A\vec{v} = \vec{0}$ \overrightarrow{a}
	- (c) if there exists a solution to the system of equations $A\vec{x} = b$ $\vec{x} = \vec{b}$ then at least one equation is a linear combination of the other two equations

(d)
$$
\det A = 0
$$

Soln. (a) Consider a system $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\vec{x} = \vec{b}$, where $1 \quad 0 \quad 1 \Big]$ $\Big]$ $\Big]$ $\Big[0$ $0 \quad 1 \quad 1 \mid, b = |0|$ $0 \t0 \t0$ | 1 $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}, b$ $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ \rightarrow $\begin{bmatrix} 0 \end{bmatrix}$ $= |0 \t1 \t1 |, b = |0|$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ \rightarrow

Clearly $\rho(A) \neq \rho([A:b])$

- \Rightarrow The system has no solution
- \Rightarrow option (a) is incorrect
- (b) If $\rho(A) < 3$ then there always exist a non zero vector *v* such that $Av = 0$.
- \Rightarrow Option (b) is correct
- (c) Option (c) is correct [By property of system of linear equation's]
- (d) If $p(A) < 3$
- \Rightarrow det(*A*) = 0
- \Rightarrow option (d) is correct

Correct option is (b), (c), (d)

36 *System of Linear Equation Chapter* **-2**

11. Consider the system of simultaneous equations

$$
2x-2y-2z = a_1
$$

-2x+2y-3z = a₂
4x-4y+5z = a₃ [NBHM-2007]

Write down the condition to be satisfied by a_1, a_2, a_3 for this system NOT to have a solution.

Soln. Consider 1 2 3 $2 -2 -2$: $[A:b] = \begin{vmatrix} -2 & 2 & -3 \end{vmatrix}$: $4 -4 5$: *a* $A : b$] = $\begin{vmatrix} -2 & 2 & -3 \\ 2 & -3 & -2 \end{vmatrix}$ *a* $\begin{vmatrix} 2 & -2 & -2 & : & a_1 \end{vmatrix}$ $= \begin{vmatrix} -2 & 2 & -3 \\ 2 & -3 & 2 \end{vmatrix}$ $\begin{bmatrix} 4 & -4 & 5 & \vdots & a_3 \end{bmatrix}$

Apply, $R_2 \rightarrow R_2 + R_1$, $R_3 \rightarrow R_3 - 2R_1$, we have

$$
R_3 \rightarrow \frac{9}{5}R_2 + R_3, \text{ We have}
$$

$$
[A:b] \sim \begin{bmatrix} 2 & -2 & -2 & \vdots & & & a_1 \\ 0 & 0 & -5 & \vdots & & & a_1 + a_2 \\ 0 & 0 & 0 & \vdots & (a_3 - 2a_1) + \frac{9}{5}(a_1 + a_2) \end{bmatrix}
$$

The system has no solution if $(a_3 - 2a_1) + \frac{1}{5}(a_1 + a_2)$ $(a_3 - 2a_1) + \frac{9}{2}(a_1 + a_2) \neq 0$ 5 $a_3 - 2a_1$) + $\frac{1}{2}(a_1 + a_2) \neq 0$

$$
\Rightarrow 5a_3 - 10a_1 + 9a_2 + 9a_1 \neq 0 \Rightarrow -a_1 + 9a_2 + 5a_3 \neq 0
$$

- (b) 0, 1 (c) 1, 2 (d) -1 , equation is **12.** If the system of equation $x - ky - z = 0$, $kx - y - z = 0$ and $x + y - z = 0$ has a non zero solution, then the nonsible value of k are possible value of *k* are (a) $-1, 2$ (b) 0, 1 (c) 1, 2 (d) $-1, 1$ **[IIT-JEE : 2011]**
- **Soln.** Given that, system of equation is

$$
x - ky - z = 0
$$

$$
kx - y - z = 0
$$

$$
x + y - z = 0
$$

Matrix representation is $1 - k - 1$ $1 -1$ $1 \quad 1 \quad -1$ *k* $A = |k|$ $\begin{vmatrix} 1 & -k & -1 \end{vmatrix}$ $=\begin{vmatrix} k & -1 & -1 \end{vmatrix}$ $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$

Given system has non zero solution $\Rightarrow |A| = 0$ \Rightarrow 1(1+1) + k (-k+1) - 1(k+1) = 0 \Rightarrow 2-k² + K - K - 1 = 0 \Rightarrow -k² + 1 = 0 $\Rightarrow k^2 = 1 \Rightarrow \boxed{k = \pm 1}$

- (b) If $m < n$ then the given system of equation has no solution
- (c) If $m < n$ then the given system of equation has infinite or no solution
- (d) If $m \le n$ then the given system of equation has no solution
- **Soln.** We know that, if number of equation is less than number of unknowns then system of linear equation have either no or infinite solutions. As, rank $[A : B]$ < number of unknowns and if rank $[A : B]$ = rank $[A]$ \Rightarrow infinite solution. rank $[A : B] \neq \text{rank } [A] \Rightarrow$ no solution.

Correct option is (c).

18. Tick true or false *A* is 3×4 matix of rank 3. Then system of equations $Ax = b$ has exactly one solution. **[TIFR-2011]**

Soln. $n - r = 4 - 3 = 1$ so it has infinite number of solution.

Statement is false.

UNSOLVED PROBLEMS

SIMULTANEOUS LINEAR SYSTEM

In all the following, you show consistency and inconsistency. If consistent find solution on it.

