

Consider the following system of m linear equation in n unknowns over a field F

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

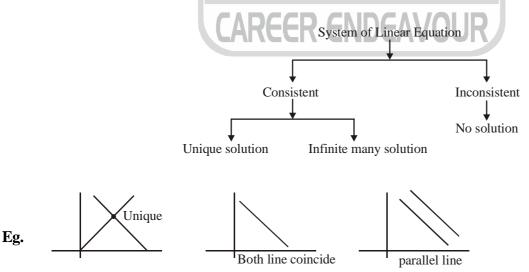
$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

$$a_{ij}, b_{i} \in F, \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n$$
This system can be written as  $Ax = b$ 
Where  $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \text{ and } b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$ 
The  $m \times n$  matrix  $A$  is called the coefficient matrix

The  $m \times n$  matrix A is called the coefficient matrix

- (a) If b = 0 then the system is called homogeneous otherwise it is called non homogeneous.
- (b) A system of linear equations is called consistent if there exist  $x_1 \in F^n$  such that  $Ax_1 = b$  otherwise it is called inconsistent.



- (c) The  $m \times (n+1)$  matrix [A:b] is called the augmented matrix of the system.
- (d) Two system Ax = b and A'x = b';  $A, A' \in F^{m \times n}$ ,  $b, b' \in F^m$  are said to be equivalent if they have the same set of solutions.





#### Homogeneous System :

Consider a homogeneous system Ax = 0 ... (1)

Clearly  $x_1 = x_2 \dots = x_n = 0$  is a solution of (1). Therefore it is always a consistent system and this solution is called trivial solution of (1).

Again if  $x_1$  and  $x_2$  are two solution of (1)

Then their linear combination  $k_1x_1 + k_2x_2$ , where  $k_1, k_2 \in F$  is also a solution of (1).

Therefore the collection of all the solutions of the system of equations Ax = 0 form a subspace of the *n*-dimensional vector space.

Theorem: The number of linear independent solution of m homogeneous linear equations in n variables,

Ax = 0 is (n-r), where r is the rank of the matrix A. Hence dimension of solution space is n-r.

Consider the system Ax = 0

Where  $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}$  and  $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times n}$ 

**Case** –**I** : If  $n \le m$ 

(a) If Rank (A) = n, then the system has only trivial solution.

(b) If  $r = \operatorname{rank}(A) < n$ , then the system has infinite number of solutions and the dimension of solution space is *n*-*r*.

#### Case -II If m < n

(a) If Rank (A) = m, then the solution space is of *n*-*m* dimension.

(b) If r = Rank(A) < m, then the system has infinite number of solutions and the dimension of solution space is *n*-*r*.

#### Non- Homogeneous system :

Consider the system Ax = b

Where 
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
,  $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$  and  $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ 

#### Theorem:

The system of equation Ax = b is consistent if and only if the coefficient matrix A and the augmented matrix [A:b] are of the same rank.

**Case - I** If m = n

(a) If Rank (A) = m = n then the system is always consistent and has unique solution.

(b) If r = Rank(A) < m = n then the system has solution if *b* can be written as linear combination of columns of *A* and has infinite solutions.

If b can not be written as linear combination of columns of A then the system has no solution

**Case -II** If m < n

(a) If Rank(A) = m < n, then the system always have infinite number of solutions.

(b) If Rank(A) < m < n then the system has infinite number of solutions if b can be written as linear





[(SCQ) CSIR-NET/JRF : June-2010]

combinations of columns of A otherwise it does not have any solution.

**Case-III** if n < m

(a) If Rank(A) = n < m, then the system has unique solution if *b* can be written as linear combination of columns of *A*.

(b) If Rank(A) < n < m, then the system has infinite number of solutions if *b* can be written as linear combination of columns of *A* otherwise it is inconsistent.

## SOLVED PROBLEMS

1. Let x + y + z = 0, x - y - z = 0 then the number of solution of this system of equation is

- (a) unique
- (c) finitely many but greater than 2
- (b) infinitely many

(b) (i) is true

(d) (i) and (ii) are true

(d) none of these

Soln. We have

x + y + z = 0

$$x - y - z = 0$$

Solving these we get x = 0 and  $y + z = 0 \implies y = -z$  and x = 0. Hence, there is infinitely many solution. Correct option is (b).

- 2. Consider the system of equations AX = 0, BX = 0 where A and B are  $n \times n$  matrices and X is a  $n \times 1$  matrix. Which of the following statements are true. [HCU-2010]
  - (i) det(A) = det(B) implies that the two systems have the same solutions
  - (ii) The two systems have the same solutions implies det(A) = det(B)

...(i) ...(ii)

- (iii)  $det(A) = 0 \neq det(B)$  implies that the two systems can have different solutions
- (a) All are true
- (c) (iii) is true

**Soln.**(i) Consider  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{3\times 3}$  and  $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3}$ 

Clearly det(A) = det(B) = 0

Now, 
$$AX = 0 \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow x_1 = 0$$

$$\Rightarrow \text{ Solution set of } AX = 0 \text{ is } \{(0, x_2, x_3) \mid x_2, x_3 \in \mathbb{R}\}\$$

Now 
$$BX = 0 \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_2 = x_3 = 0$$





[HCU-2011]

[HCU-2016]

 $\Rightarrow$  Solution set for BX = 0 is  $\{(x_1, 0, 0) | x_1 \in \mathbb{R}\}$ 

Hence (i) is incorrect.

32

(ii) If det(A) = 3 and det(B) = 4.

AX=0 and BX=0 has unique trivial solution. Hence solutions of the system AX=0 and BX=0 are the same, but  $det(A) \neq det(B)$ 

Hence (ii) is incorrect.

(iii) If det (A) = 0 and det $(B) \neq 0$  then the system AX = 0 have more than one solution and the system BX = 0always have unique trivial solution. Thus the two systems have different solutions.

Hence (iii) is correct

#### **Correct option is (c)**

- 3. Let A be a  $4 \times 4$  real matrix. Which of the following 4 conditions is not equivalent to the other 3?
  - (a) The matrix A is invertible
  - (b) The system of equations Ax = 0 has only trivial solution
  - (c) Any two distinct rows u and v of A are linearly independent
  - (d) The system of equations Ax = b has a unique solution  $\forall b \in \mathbb{R}^4$

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

Consider  $A = \begin{vmatrix} 0 & 1 & 1 \end{vmatrix}$ Soln.

1 1

Clearly any two rows of A are linearly independent. But det(A) = 0

 $\Rightarrow$  A is not invertible

 $\Rightarrow$  Ax = 0 has more than one solution

#### **Correct option is (c)**

4. The system of equations  $6x_1 - 2x_2 + 2\alpha x_3 = 1$  and  $3x_1 - x_2 + x_3 = 5$  has no solution if  $\alpha$  is equal to

Consider  $[A:b] = \begin{bmatrix} 6 & -2 & 2\alpha & \vdots & 1 \\ 3 & -1 & 1 & \vdots & 5 \end{bmatrix}$ Soln.

Apply 
$$R_2 \rightarrow R_2 - \frac{1}{2}R_1$$
, we have  

$$\begin{bmatrix} A \cdot b \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2\alpha & \vdots & 1 \\ & & & 0 \end{bmatrix}$$

$$\begin{bmatrix} A:b \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1-\alpha & \vdots & \frac{9}{2} \end{bmatrix}$$

The system has no solution if  $1 - \alpha = 0 \implies \alpha = 1$ 

#### **Correct option is (c)**

- 5. Let A be a  $5 \times 5$  real matrix. Suppose 0 is one of eigenvalues of A. Which of the following statement is true?
  - (a) System AX = 0 has unique solution
  - (c) AX = 0 has a non-trivial solution
- (b) System AX = C has unique solution for any C

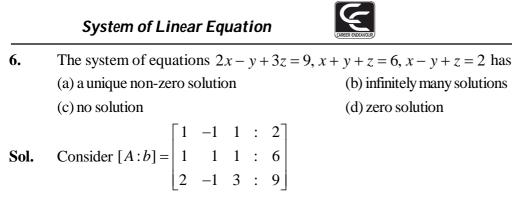
(d) 5

- (d) none of the above [HCU-2018]
- If 0 is one of the eigen value of ASol.

 $\Rightarrow$  det (A) = 0  $\Rightarrow$  AX = 0 has a non trivial solution

**Correct option is (c)** 





Apply 
$$R_2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 - 2R_1$$
, we have

$$[A:b] = \begin{bmatrix} 1 & -1 & 1 & : & 2 \\ 0 & 2 & 0 & : & 4 \\ 0 & 1 & 1 & : & 5 \end{bmatrix}$$

$$R_2 \rightarrow \frac{1}{2}R_2$$

$$[A:b] = \begin{bmatrix} 1 & -1 & 1 & : & 2 \\ 0 & 1 & 0 & : & 2 \\ 0 & 1 & 1 & : & 5 \end{bmatrix}$$

Apply  $R_1 \rightarrow R_1 + R_2$  and  $R_3 \rightarrow R_3 - R_2$ , we have

$$[A:b] = \begin{bmatrix} 1 & 0 & 1 & \vdots & 4 \\ 0 & 1 & 0 & \vdots & 2 \\ 0 & 0 & 1 & \vdots & 3 \end{bmatrix}$$

 $\Rightarrow \operatorname{Rank} (A) = \operatorname{Rank}([A : b]) \text{ and also } A \text{ is invertible.}$  $\Rightarrow \operatorname{The system has a unique non zero solution.}$ Correct option is (a)

7. Let  $P = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$  be a 3×3 matrix over  $\mathbb{R}$ . Then for a given vector  $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbb{R}^{3\times 1}$ , the vector space

of all  $3 \times 1$  matrices over  $\mathbb{R}$ , the system PX = Y has a solution if

- (a)  $y_1 y_2 + y_3 = 0$  (b)  $2y_1 y_2 + y_3 = 0$
- (c)  $y_1 + y_2 y_3 = 0$  (d)  $2y_1 + y_2 y_3 = 0$

Soln. Consider  $[A:b] = \begin{bmatrix} 1 & -2 & 1 & : & y_1 \\ 2 & 1 & 1 & : & y_2 \\ 0 & 5 & -1 & : & y_3 \end{bmatrix}$ 

Apply,  $R_2 \rightarrow R_2 - 2R_1$ , we have



[CUCET-2016]

$$[A:b] = \begin{bmatrix} 1 & -2 & 1 & \vdots & y_1 \\ 0 & 5 & -1 & \vdots & y_2 - 2y_1 \\ 0 & 5 & -1 & \vdots & y_3 \end{bmatrix}$$

Apply,  $R_3 \rightarrow R_3 - R_2$ , we have

$$[A:b] = \begin{bmatrix} 1 & -2 & 1 & \vdots & y_1 \\ 0 & +5 & -1 & \vdots & y_2 - 2y_1 \\ 0 & 0 & 0 & \vdots & y_3 - y_2 + 2y_1 \end{bmatrix}$$

Thus the system has a solution if  $2y_1 - y_2 + y_3 = 0$ 

## Correct option is (b)

34

8. Following system of linear equations x + 4y + 3z = 0 x + 3y + 4z = 0 x + 2y + 5z = 0 does have(a) no solution
(b) infinitely many solutions
(c) more than one but finitely many solutions
(d) exactly one solution.
Soln. Consider  $A = \begin{bmatrix} 1 & 4 & 3 \\ 1 & 3 & 4 \\ 1 & 2 & 5 \end{bmatrix}$ Apply,  $R_2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 - R_1$ , we have  $A = \begin{bmatrix} 1 - 4 & 3 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix}$ Apply,  $R_3 \rightarrow R_3 - 2R_2$ , we have  $A = \begin{bmatrix} 1 & 4 & 3 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix}$ Apply,  $R_3 \rightarrow R_3 - 2R_2$ , we have  $A = \begin{bmatrix} 1 & 4 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$   $\Rightarrow \text{Rank}(A) = 2 < 3$ 

 $\Rightarrow$  The system has infinitely many solution.

## Correct option is (b)

9. Consider the following system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{15}x_5 = b_1$$
  

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{25}x_5 = b_2$$
  

$$\vdots$$
  

$$a_{81}x_1 + a_{82}x_2 + \dots + a_{85}x_5 = b_8$$

A vector  $(\lambda_1, \lambda_2, ..., \lambda_5) \in \mathbb{R}^5$  is said to be a solution of the system if  $x_i = \lambda_i, i = 1, 2..., 5$  satisfies all the equations. Then

(a) If the system of equations has only finitely many solutions then it has exactly one solution

- (b) If all the  $b_i$ 's are zero then the set of solutions of the system is a subspace of  $\mathbb{R}^5$ .
- (c) A system of 8 equations in 5 unknowns is always consistent
- (d) If the system of equations has a unique solution then the rank of the matrix  $[a_{ij}]$  must be 5.



[HCU-2012]



- Soln. (a) If the field is inifinite then we come across only three cases which are
  - (i) No solution (ii) Infinite solution (iii) Unique solution

Thus if the system of equations has only finitely many solutions. Then it has to be unique. Thus option (a) is correct.

- (b) If the system AX = b,  $A = [a_{ij}]_{m \times n}$  is homogeneous then the solution set is subspace of  $F^{n}$ .
- $\Rightarrow$  option (b) is correct.
- (c) Consider the system AX = b, where

| 1 | 0                                                                         | 0                                                                                   | 0                                                                                                             | 1                                                    |                                                       |                                                      | $\begin{bmatrix} 0 \end{bmatrix}$                                                                                                            |
|---|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 1                                                                         | 0                                                                                   | 0                                                                                                             | 1                                                    |                                                       |                                                      | 0                                                                                                                                            |
| 0 | 0                                                                         | 0                                                                                   | 0                                                                                                             | 0                                                    |                                                       |                                                      | 0                                                                                                                                            |
| 0 | 0                                                                         | 1                                                                                   | 0                                                                                                             | 1                                                    |                                                       | h                                                    | 0                                                                                                                                            |
| 0 | 0                                                                         | 0                                                                                   | 1                                                                                                             | 1                                                    | ,                                                     | $D \equiv$                                           | 0                                                                                                                                            |
| 0 | 0                                                                         | 0                                                                                   | 0                                                                                                             | 0                                                    |                                                       |                                                      | 0                                                                                                                                            |
| 0 | 0                                                                         | 0                                                                                   | 0                                                                                                             | 0                                                    |                                                       |                                                      | 0                                                                                                                                            |
| 0 | 0                                                                         | 0                                                                                   | 0                                                                                                             | 0                                                    | 8.75                                                  |                                                      | 1                                                                                                                                            |
|   | $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | $\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$ | $\begin{array}{ccccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{vmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$ |

Clearly Rank(A)  $\neq$  Rank([A:b])

- $\Rightarrow$  The system AX = b has no solution
- $\Rightarrow$  Option (c) is incorrect
- (d) If the system AX = b,  $A = [a_{ij}]_{m \times n}$  has unique solution then rank of A is always n.
- $\Rightarrow$  Option is (d) is correct.

### Correct option are (a), (b), (d)

- 10. Consider a linear system of equations  $A\vec{x} = \vec{b}$  where A is a 3 × 3 matrix and  $\vec{b} \neq 0$ . Suppose the rank of the matrix of coefficients  $A = (a_{ij})$  is equal to 2 then [HCU-2015]
  - (a) there definitely exists a solution of the system of equations
  - (b) there exists a non-zero column vector  $\vec{v}$  in  $\mathbb{R}^3$  such that  $A\vec{v} = \vec{0}$
  - (c) if there exists a solution to the system of equations  $A\vec{x} = \vec{b}$  then at least one equation is a linear combination of the other two equations

(d) det 
$$A = 0$$

**Soln.** (a) Consider a system  $A\vec{x} = \vec{b}$ , where  $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ ,  $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 

Clearly  $\rho(A) \neq \rho([A:b])$ 

- $\Rightarrow$  The system has no solution
- $\Rightarrow$  option (a) is incorrect
- (b) If  $\rho(A) < 3$  then there always exist a non zero vector v such that Av = 0.
- $\Rightarrow$  Option (b) is correct
- (c) Option (c) is correct [By property of system of linear equation's ]
- (d) If  $\rho(A) < 3$
- $\Rightarrow \det(A) = 0$
- $\Rightarrow$  option (d) is correct

Correct option is (b), (c), (d)



System of Linear Equation



**11.** Consider the system of simultaneous equations

$$2x - 2y - 2z = a_1$$
  
-2x + 2y - 3z = a\_2  
$$4x - 4y + 5z = a_3$$
  
[NBHM-2007]

Write down the condition to be satisfied by  $a_1, a_2, a_3$  for this system NOT to have a solution.

Soln. Consider  $[A:b] = \begin{bmatrix} 2 & -2 & -2 & : & a_1 \\ -2 & 2 & -3 & : & a_2 \\ 4 & -4 & 5 & : & a_3 \end{bmatrix}$ 

Apply,  $R_2 \rightarrow R_2 + R_1$ ,  $R_3 \rightarrow R_3 - 2R_1$ , we have

|                     | 2 | -2 | -2 | : | $a_1$                                                          |
|---------------------|---|----|----|---|----------------------------------------------------------------|
| $[A\!:\!b]\!\sim\!$ | 0 | 0  | -5 | : | $a_1 + a_2$                                                    |
|                     | 0 | 0  | 9  | : | $\begin{bmatrix} a_1 \\ a_1 + a_2 \\ a_3 - 2a_1 \end{bmatrix}$ |

$$R_3 \rightarrow \frac{9}{5}R_2 + R_3$$
, We have

$$[A:b] \sim \begin{bmatrix} 2 & -2 & -2 & \vdots & & & a_1 \\ 0 & 0 & -5 & \vdots & & & a_1 + a_2 \\ 0 & 0 & 0 & \vdots & (a_3 - 2a_1) + \frac{9}{5}(a_1 + a_2) \end{bmatrix}$$

The system has no solution if  $(a_3 - 2a_1) + \frac{9}{5}(a_1 + a_2) \neq 0$ 

$$\Rightarrow 5a_3 - 10a_1 + 9a_2 + 9a_1 \neq 0 \Rightarrow -a_1 + 9a_2 + 5a_3 \neq 0$$

- 12. If the system of equation x ky z = 0, kx y z = 0 and x + y z = 0 has a non zero solution, then the possible value of k are (a) -1, 2 (b) 0, 1 (c) 1, 2 (d) -1, 1 [IIT-JEE : 2011]
- Soln. Given that, system of equation is

$$x - ky - z = 0$$
$$kx - y - z = 0$$
$$x + y - z = 0$$

Matrix representation is  $A = \begin{bmatrix} 1 & -k & -1 \\ k & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ 

Given system has non zero solution  $\Rightarrow |A| = 0$   $\Rightarrow 1(1+1) + k(-k+1) - 1(k+1) = 0$   $\Rightarrow 2 - k^2 + \cancel{k} - \cancel{k} - 1 = 0 \Rightarrow -k^2 + 1 = 0$  $\Rightarrow k^2 = 1 \Rightarrow \boxed{k = \pm 1}$ 

Correct option is (d)



|       | System of Linear EquationChapter -237                                                                                                                                                                 |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 13.   | The equation true or false verify [TIFR-2012]                                                                                                                                                         |  |  |  |  |  |
|       | $x_1 + \frac{1}{2} x_2 + \frac{1}{3} x_3 = 1$                                                                                                                                                         |  |  |  |  |  |
|       | $x_1 + \frac{1}{4} x_2 + \frac{1}{9} x_3 = 1$                                                                                                                                                         |  |  |  |  |  |
|       | $x_1 + \frac{1}{8}x_2 + \frac{1}{27}x_3 = 1$<br>has no solution                                                                                                                                       |  |  |  |  |  |
| Calm  |                                                                                                                                                                                                       |  |  |  |  |  |
| Soln. | After solving these we get $\rho(A) = \rho(A : B) = 3$ , hence unique solution                                                                                                                        |  |  |  |  |  |
|       | Statement is false.                                                                                                                                                                                   |  |  |  |  |  |
| 14.   | The equation $x_1 + 2x_2 + 3x_3 = 1$ , $x_1 + 4x_2 + 9x_3 = 1$ , $x_1 + 8x_2 + 27x_3 = 1$ have [TIFR-2010]                                                                                            |  |  |  |  |  |
|       | <ul><li>(a) only one solution</li><li>(b) two solution</li><li>(c) infinitely many solution</li><li>(d) no solution</li></ul>                                                                         |  |  |  |  |  |
| Soln. | $\rho(A) = \rho(A:B)$ and also A is invertible                                                                                                                                                        |  |  |  |  |  |
|       | Correct option is (a)                                                                                                                                                                                 |  |  |  |  |  |
| 15.   | Let A be a 5 × 4 matrix with real entries such that $A\underline{x} = \underline{0}$ iff $\underline{x} = \underline{0}$ where $\underline{x}$ is 4 × 1 vector and $\underline{0}$ is null            |  |  |  |  |  |
|       | vector. Then rank of A is $[(SCQ) CSIR-NET/JRF : Dec. 2013]$                                                                                                                                          |  |  |  |  |  |
| Soln. | (a) 4 (b) 5 (c) 2 (d) 1<br>$Ax = 0$ has trivial solution only If $\rho(A)$ = the number of columns = 4                                                                                                |  |  |  |  |  |
| 4.6   | Correct option is (a).                                                                                                                                                                                |  |  |  |  |  |
| 16.   | Let A be a $5 \times 4$ matrix with real enteries such that the space of all solution of the linear system.                                                                                           |  |  |  |  |  |
|       | $Ax^{t} = [1, 2, 3, 4, 5]^{t}$ is given by $\{[1 + 2s, 2 + 3s, 3 + 4s, 4 + 5s]^{t} : s \in \mathbb{R}\}$ . Here $M^{t}$ denote the transpose of                                                       |  |  |  |  |  |
|       | a matrix $M$ ) then the rank of A is equal to<br>(a) 4 (b) 3 (c) 2 (d) 1 [(SCQ) CSIR-NET/JRF : Dec-2011]                                                                                              |  |  |  |  |  |
| Soln. | Solution set of $Ax^t = [1 2 3 4 5]^t$ is given by                                                                                                                                                    |  |  |  |  |  |
|       | $S = \left\{ [1+2s, 2+3s, 3+4s, 4+5s]' : s \in \mathbb{R} \right\} = \left\{ (1, 2, 3, 4) + s(2, 3, 4, 5) : s \in \mathbb{R} \right\} \implies \dim S = 2$                                            |  |  |  |  |  |
|       | $\therefore$ The number of L.I. solution of the given non homogeneous system of equation is 2.                                                                                                        |  |  |  |  |  |
|       | Hence, $n - r + 1 = 2$                                                                                                                                                                                |  |  |  |  |  |
|       | $\Rightarrow 4 - r + 1 = 2 \qquad \Rightarrow \checkmark r = \checkmark 3 \qquad \Rightarrow \boxed{r = 3}$                                                                                           |  |  |  |  |  |
|       | Correct option is (b).                                                                                                                                                                                |  |  |  |  |  |
| 17.   | $[A]_{m \times n} x = [b]_{n \times 1}$ be a system of equation then which of the following is true?                                                                                                  |  |  |  |  |  |
|       | <ul> <li>(a) If m=n then the given system of equation has always unique solution [(SCQ) CSIR-NET/JRF: Dec-2011]</li> <li>(b) If m &lt; n then the given system of equation has no solution</li> </ul> |  |  |  |  |  |

- (c) If m < n then the given system of equation has infinite or no solution
- (d) If  $m \le n$  then the given system of equation has no solution
- Soln. We know that, if number of equation is less than number of unknowns then system of linear equation have either no or infinite solutions. As, rank [A:B] < number of unknowns and if rank [A:B] = rank  $[A] \Rightarrow$  infinite solution. rank  $[A:B] \neq$  rank  $[A] \implies$  no solution.

## Correct option is (c).





**18.** Tick true or false

A is  $3 \times 4$  matrix of rank 3. Then system of equations Ax = b has exactly one solution. [TIFR-2011]

**Soln.** n - r = 4 - 3 = 1 so it has infinite number of solution.

Statement is false.

# **UNSOLVED PROBLEMS**

## SIMULTANEOUS LINEAR SYSTEM

In all the following, you show consistency and inconsistency. If consistent find solution on it.

| (1) $\begin{array}{l} x + 2y - 3z = -4 \\ 2x + 3y + 2z = 2 \\ 3x - 3y - 4z = 1 \end{array}$ |                                                                  | (2) $\begin{aligned} x + y + z &= 6\\ x + 2z &= 7\\ 3x + y + z &= 1 \end{aligned}$ | 2                                 |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|
| (3) 5x - 7y = 2 $7x - 5y = 3$                                                               |                                                                  | (4) 4x - 2y = 3 $6x - 3y = 5$                                                      |                                   |
| (5) $x-2y+z=0$ $x+y-z=0$ $3x+6y-5z=0$                                                       |                                                                  | (6) 4x + 3z = 8 $2x - z = 2$ $3x + 2y = 5$                                         |                                   |
| (7) $x + y + z = 5$ $x + 3y + 3z = 9$ $x + 2y + \alpha z = \beta$                           | Find $\alpha$ , $\beta$ so that it hav                           | e infinite many so                                                                 | olution.                          |
| (8) $x + y + z = 3$<br>x + 2y + 3z = 4<br>x + 4y + kz = 6                                   | vill not have unique soluti                                      | on for k equal to                                                                  | UR                                |
| (a) 0                                                                                       | (b) 5                                                            | (c) 6                                                                              | (d) 7                             |
| (9) $x+2y+z=6$<br>2x+y+2z=6<br>x+y+z=5                                                      | •                                                                | 3y = 4 for wh<br>y + z = 4<br>2y - z = a                                           | at value of a system has solution |
| (11) $4x + 2y = 7$ $2x + y = 6$                                                             | <i>x</i> -                                                       | x + 5y = -1 $-y = 2$ $+3y = 3$                                                     |                                   |
| $2x_1 - x_2 + 3x_3 =$ (13)<br>$3x_1 - 2x_2 + 5x_3 =$ $-x_1 - 4x_2 + x_3 =$                  | $= 2 \qquad (14) \begin{array}{c} x_1 \\ x_1 \\ x_1 \end{array}$ | $+ x_{2} + 2x_{3} = 1$<br>+ $2x_{2} + 3x_{3} = 2$<br>+ $4x_{2} + ax_{3} = 4$       | Find $= ?$                        |

has unique solution. Find = ?



38