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Error Analysis 1

A real number x can  either  have one digit , finite number of digits  or can have infinitely many digits. But a digital
calculating device can hold only a finite number of digits and therefore, after a finite number  of digits (depend-
ing on the capacity of the calculating device) the rest should be discarded in some sense. In this way, the
representation of the real number x on a computing device is only approximate. Although the omitted part  of
x is very small in its value, this approximation can lead to considerably large error in the numerical computation.

Definition (Floating-point From):  Let x be a non- zero real number. An n-digit floating- point number

in base  has the form      1 21 . ...s e
nf x d d d


     where   1 2

1 2 2. ... .... n
n n

dd dd d d

   
  

is a -fraction called the mantissa or singificand, s = 1 or 0 is called the sign and e is an integer called the
exponent. The number  is also called the radix and the point preceding d1 is called the radix point.

Remark: (i) When  =2, the floating-point representation  is called binary floating- point representation and when
10  , it is called the decimal floating-point representation.

(ii) Note that there are only finite number of digits in the floating- point representation where as a real
number can have infinite sequence of digits for instance 1/3 =0.33333...... Therefore, the   floating-
point representation  is only an approximatation to a real number.

(iii) Afloating-point number is said to be normalized if either 1 0d   or 1 2 .... 0nd d d    .

Ex. The following are examples of real number in the decimal floating point representing

I. The real number x = 6.238 can be represented as 6.238 = (–1)0 × 0.6238 ×101, in which case, we have
s = 0,  = 10 e= 1, d1 = 2, d3 = 3 and d4 = 8. Note that this representation is  the  normalized floating-
point representation.

II. The real number x = – 0.0014 can be represented in the decimal float-point representation as –0.0014 = (–1)1 ×

0.0014 ×101,  which is not  in the normalized from.  The normalized representation is  1 21 0.14 10x     .

Definition (Overflow and Underflow): The exponent e is limited to a range m e M  .During the
calculation if some computed number has an exponent e M  then we say, the memory over flow or if  e < m,
we say the memory underflow.

Remark: In the case of overflow, computer will usually produce meaningless results or simply prints the symbol
NaN, which means, the quantity obtained due to such a calculation is ‘not a number’. The symbol   is
also denoted as NaN on some computers. The underflow is less serious because in this case, a computer
will simply consider the number as zero.

Chopping and Rounding a Number

 Any real number x can be represented exactly as    1 2 11 ... ..... ,s e
nx d d d  

    
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With 1 0d   or 2 3 ... 0,d d   s = 0 or 1, and m < e < M  for which the floating-point form  is an approxi-
mate representation. Let us denote this approximation of x by fl (x).  There are two ways to produce fl(x) from
x as defined below.

 (i) The chopped machine approximatation of x is given by      1 21 . ...s e
nfl x d d d


    . In this mathod

we cut the number upto first  n decimal point irrespective of the values after n decimal point

Ex. Let 0.2346513x  ....Then upto three decimal places we have   0.234fl x   we simply chapped of all the
digits.

(ii)  The rounded machine opproximation of x is given by

 
     

      

1 2 1

1 2 1

1 . ... ,0
2

1 . ... 1 ,
2

s e
n n

s e
n n

fl x d d d d
fl x

fl x d d d d





                


in this method if last decimal place is 
2


  we add 1 in last decimal palce otherwise it remain same

Ex. Let 0.2346513....x  . Note that at fourth decimal palce we have digit  6, which is greater then 
10 5

2 2

  ,

hence upto three decimal places we have   0.235fl x 

Different Type of Errors

 The approximate representation of a real number obviously differs from the actual number, whose difference
is called an error.

(i) The error in a computed quantity is defined as Error = True Value –Approximate Value

(ii) The absolute error is the absolute value of the error defined above.

(iii) The relative error is a meansure of the error in relation to the size of the true value as given by

ErrorRelative Error
True Value



 (iv) The percentage error is defined as 100 times the relative error.

(v) The tern trunction error is used to denote error, which result from approximating a smooth function by
truncting its Taylor series representation to a finite number of terms.

Remark:  (i) Let xA be the approximation of the real number x. Then

   : ErrorA A AE x x x x  

     : absolute Errora A A AE x x E x 

   
 

: Relative Error A
r A A

E x
E x x

x
 

(ii) If we denote the relative error in fl (x) as 0,  then we have    1 ,fl x x  we x is a real number
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Ex. A second degree polynomial approximation to    1, 0,1f x x x  

Using the Taylor series expansion about  x = 0 is given by  
 

2 3

51
2 8 16 1

x x xf x    
 

Therefore, the truncation error is given by   5
3 / 16 1x  

Loss of Significant Digits

 If xA is an approximation to x, then we say that xA approximates x to r significant -digits if

11
2

s r
Ax x    

With s the largest integer such that s x 

Ex. (a) For 1 / 3x  , the approximate number 0.333Ax   has three significant digits, since
3.00033 0.0005 0.5 10Ax x      . But 110 0.333... .x    Therefore, in this case s = –1 and hence r = 3.

(b) For 0.02138,x   the approximate number .02144Ax   has the abolute error
3.00006 0.0005 0.5 10Ax x      . But 210 0.02138 x   . Therefore, in  this case s = –2 and therefore,

the number xA has only two significant digits, but not  three, with respect to x.

Remark: In a very simple way, the number of leading non-zero digits of xA that are correct relative to the corre-
sponding digits in the true value x is called the number of significant digits in xA.

The role of significant digits in the numerical calculation is very important in the sense that the loss of signifi-
cant digits many result in drastic amplification of the relative error.

 The loss of significant digits in the process of calculation is refered to as Loss of significance.

Ex. Consider the function    1 .f x x x x    On a six-digit decimal calculator, we have

 100000 100f   where as the true value is 158.113. This makes a drastic error in the calculation. This is
the result  of the loss of  significant digits, which can be seen from the fact that as x increases, the terms

1x   and x  comes closer to each other and therefore loss of significant error in their computed value
increasing.

Such loss can often be avoided by rewritting the given expression (whenever possible) in such a way that
subtraction is avoided. For instance, the defination of f(x) given in this example can be rewritten as

 
1
xf x

x x


 

With this new definition, we see that on a six-dgit calculator, we have  100000 158.114000f 

Propagation of Error

Let xA and yA denote the numbers used in the calculation, and let xT and yT be the corresponding true values.
We will now see how error propagates with the four basic arithmeic operations.

Propagated Error in Addition and Subtraction

Let T Ax x  and T Ay y   are positive numbers. The relative error  r A AE x y is given by
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          T T T TT T A A
r A A

T T T T T T

x y x yx y x y
E x y

x y x y x y
      

   
  

This shows that relative error propagate solwly with addition, where as amplifies drastically with subtraction
when T Tx y .
Popagated Error is Multiplication

The relative error  r A AE x y  is given by

            T
T T TT T A A

r A A
T T T T

x y x yx y x y
E x y

x y x y
      

  
 

       T T
r A r A r A r A

T T T T T T

x y E x E y E x E y
x y x y x y

        
           
This shows that relative error propagate slowly with multiplication.

Propagated Error in Division

The relative   /r A AE x y  is given by

            / // /
/

/ /
T T T TT T A A

r A A
T T T T

x y x yx y x y
E x y

x y x y
  

 

   
        T T T T T T T

r A r A
T T T T T

x y y x y x y E x E y
x y x y y
    

   
  

      1
1 r A r A

r A

E x E y
E Y

 


This  show that relative error propagate slowly with division, unless   1.r AE Y   But this is very unlikely

because we always expect the error to be very small, i.e. very close to zero in which case the right hand side
is approximately equal to    r A r AE x E Y .

Propagated Error in Function Evaluation

Consider  evaluating  f x  at the approximate value Ax  rather than at x. The consider how well does

 Af x  approximate  f x ? Using the mean-value theorem, we get

      A Af x f x f x x   

Where  is an unkonwn point between x and xA.

 The relative error of  f x  with respect to  Af x  is given by

    
     

   r A r

f f
E f x x x xE x

f x f x
  

  


