4 Application of Derivatives

Increasing and Decreasing Function:

A continuous function in an interval I is

- (a) Strictly increasing if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \forall x_1, x_2 \in I$
- (b) Increasing if $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2) \forall x_1, x_2 \in I$
- (c) Strictly decreasing if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \forall x_1, x_2 \in I$
- (d) decreasing if $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \quad \forall x_1, x_2 \in I$

In other way, A continuous function on interval I and differentiable on I is

- (a) strictly increasing if $f'(x) > 0 \quad \forall x \in I$ (b) increasing if $f'(x) \ge 0 \quad \forall x \in I$
- (c) strictly decreasing if $f'(x) < 0 \quad \forall x \in I$ (d) decreasing if $f'(x) \le 0 \quad \forall x \in I$
- **Ex.** The function $f(x) = \sin(x) + \cos(x)$, where $0 \le x \le 2\pi$, is increasing in the interval

(a)
$$\left(0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right)$$

(b) $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$
(c) $\left(0, \frac{5\pi}{4}\right)$
Soln. $f(x) = \sin(x) + \cos(x)$
 $f'(x) = \cos(x) - \sin(x)$
 $f'(x) = 0 \Rightarrow \cos(x) = \sin(x)$
 $\Rightarrow \tan(x) = 1$
 $\Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$
Sign scheme for $f'(x)$,
 $f'(x) > 0 \forall x \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right)$
option (a) is correct

Chapter -4

E

The range of values of x in which $y = 2x^3 - 9x^2 + 12x + 4$ is strictly decreasing is Ex. (a) $(-\infty, 1]$ (b) [-1,2](c) [1, 2](d) [-1, -2]**Soln.** $y = 2x^3 - 9x^2 + 12x + 4$ $\frac{dy}{dx} = 6x^2 - 18x + 12$ $=6(x^{2}-3x+2)=6(x-2)(x-1)$ $\frac{dy}{dx} = 0 \Longrightarrow x = 1, 2$ - + + Sign scheme for f'(x) $f'(x) < 0 \quad \forall x \in (1,2)$ Correct option is (c) The function $f(x) = \frac{x}{\ln(x)}$ is increasing in the interval Ex. (a) (0,1) (b) (0, e) (c) (e,∞) (d) $(0, \infty)$ **Soln.** $f(x) = \frac{x}{\ln(x)}$ Now, $f'(x) = \frac{\ln(x) \cdot 1 - x \cdot \frac{1}{x}}{(\ln(x))^2} = \frac{\ln(x) - 1}{(\ln(x))^2}$ e _¥ +¥ $f'(x) = 0 \Rightarrow \ln(x) - 1 = 0 \Rightarrow \ln(x) = 1$ $\Rightarrow x = e$ $f'(x) > 0 \quad \forall x \in (e,\infty)$ **Option** (c) is correct The function $x + \sin(x)$ is best described as Ex. (b) non-increasing (a) non-decreasing (c) decreasing (d) increasing $f(x) = x + \sin(x)$ Soln. $f'(x) = 1 + \cos(x) \ge 0 \quad \forall x \in \mathbb{R}$ f is increasing or constant function \Rightarrow f is non-decreasing function option (a) is correct

Slope of Tangent and Normal,

Let y = f(x) be a continous curve and let $P(x_1, y_1)$ be point on it. 3.

then, $\left(\frac{dy}{dx}\right)_{(x_1, y_1)}$ is the slope of tangent to the curve y = f(x) at a point $P(x_1, y_1)$.

$$\Rightarrow \left(\frac{dy}{dx}\right)_{P} = \tan \theta = \text{slope of tangent at } P$$

Where, θ is the angle which the tangent at $P(x_1, y_1)$ forms with the postive direction of X- axis as shown in the figure.

Remark:

(i) Horizontal tangent: if tangent is parallel to x- axis, then

$$\theta = 0^{\circ} \Longrightarrow \tan \theta = 0$$
$$\left(\frac{dy}{dx}\right) = 0$$

$$\therefore \left(\overline{dx} \right)_{(x_1, y_1)} =$$

(ii) Vertical tangent: if tangent is perpendicular to x-axis or parallel to y-axis, then $\theta = 90^{\circ} \Longrightarrow \tan \theta = \infty \ or \ \cot \theta = 0$

$$\therefore \left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0$$

Slope of Normal:

We know that the normal to the curve at $P(x_1, y_1)$ is a line perpendicular to tangent at $P(x_1, y_1)$ and passes through *P*.

$$\therefore$$
 Slope of the normal at

 $P = \frac{-1}{\text{Slope of the tangent at P}}$

$$\Rightarrow \text{ slope of normal at } P(x_1, y_1) = -\frac{1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}}$$

or slope of normal at $P(x_1, y_1) = -\left(\frac{dy}{dx}\right)_{(x_1, y_1)}$

Remark :

(i) Horizontal normal: if normal is parallel to x-axis, then

$$-\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \text{ or } -\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0$$

(ii) Vertical normal: If normal is perpendicular to x-axis or parallel to y-axis then $-\left(\frac{dy}{dx}\right)_{(x,y)} = 0$

48 Differentiation & Application of Derivatives

Chapter -4

- **Ex.** Find the slopes of the tangent and normal to the curve $x^3 + 3xy + y^3 = 2$ at (1,1).
- **Soln.** Given equation of curve is $x^3 + 3xy + y^3 = 2$ Differentiating it w.r.t. *x*, we get

$$3x^{2} + 3x\frac{dy}{dx} + 3y + 3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(3x^{2} + 3x)}{(3y + 3y^{2})} \Rightarrow \frac{dy}{dx} = -\frac{(x^{2} + y)}{(x + y^{2})}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = -\left(\frac{2}{2}\right) = -1$$

 $\therefore \text{ Slope of tangent at } (1,1) = \left(\frac{dy}{dx}\right)_{(1,1)} = -1$

and slope of normal at $(1,1) = -\frac{1}{\left(\frac{dy}{dx}\right)_{(1,1)}} = \frac{-1}{-1} = 1$

Ex. Find the point on the curve $y = x^3 - 3x$ at which tangent is parllel to x- axis.

Soln. Let the point at which tangent is parallel to x- axis be $P(x_1, y_1)$, Then, it must lie on curve,

Therefore, we have $y_1 = x_1^3 - 3x_1$

Differentiating $y = x^3 - 3x$ w.r.t. x, we get

$$\frac{dy}{dx} = 3x^2 - 3 \Longrightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 3x_1^2 - 3$$

Since, the tangent is parallel to x-axis

$$\therefore \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0 \Rightarrow 3x_1^2 - 3 = 0$$

$$\Rightarrow x_1 = \pm 1$$

From Eqs. (i) and (ii), we get

When $x_1 = 1$, then $y_1 = 1 - 3 = -2$

When $x_1 = -1$, then $y_1 = -1 + 3 = 2$

 \therefore Points at which tangent is parallel to x- axis. are (1,-2) and (-1,2)

Ex. Find the point on the curve $y = x^3 - 2x^2 - x$ at which the tangent line is paralle to the line y = 3x - 2

Soln. Let $P(x_1, y_1)$ be the required point.

Then we have $y_1 = x_1^3 - 2x_1^2 - x_1$...(i)

Differentiating the caurve $y = x^3 - 2x^2 - x$ w.r.t x, we get

$$\frac{dy}{dx} = 3x^2 - 4x - 1 \Longrightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 3x_1^2 - 4x_1 - 1$$

Since, tangent at (x_1, y_1) is parallel ton the line y = 3x - 2 \therefore slope of the tangent at $P(x_1, y_1) =$ Slope of the line

Differentiation & Application of Derivatives 49

$$y = 3x - 2 \Rightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 3$$

$$\Rightarrow 3x_1^2 - 4x_1 - 1 = 3 \Rightarrow 3x_1^2 - 4x_1 - 4 = 0$$

$$\Rightarrow (x_1 - 2)(3x_1 + 2) = 0 \Rightarrow x_1 = 2, -2/3 \qquad \dots (ii)$$

From Eqs. (i) and (ii), we get
When $x_1 = 2$, then
 $y_1 = 8 - 8 - 2 \Rightarrow y_1 = -2$
When $x_1 = -2/3$, then $y_1 = x_1^3 - 2x^2 - x_1$

$$\Rightarrow y_1 = \frac{-8}{27} - \frac{8}{9} + \frac{2}{3} \Rightarrow y_1 = \frac{-14}{27}$$

Thus, the point at which tangent is parallel to y = 3x - 2 are (2, -2) and $\left(-\frac{2}{3}, \frac{-14}{27}\right)$

Maxima and Minima

Local maximum/Local Minimum

A point c in the interior of the domain of f is called

(a) Local maxima, if there exists an h > 0 such that $f(c) > f(x) \forall x \in (c-h, c+h)$.

The value f(c) is called the local maximum value of f.

(b) local minima, if there exists h > 0 such that

 $f(c) < f(x) \quad \forall x \in (c-h, c+h)$

The value f(c) is called the local minimum value of f.

Absolute Maximum/Absolute Minimum

A function f is defined by [a,b] is said to be,

- (a) absolute maximum at $x = c \in [a,b]$ if $f(x) \le f(c) \quad \forall x \in [a,b]$
- (b) absolute minimum at $x = d \in [a, b]$ if $f(x) \ge f(d) \quad \forall x \in [a, b]$

Stationary points and Stationary values of a function

Definition: If f'(c) = 0, then x = c is called a stationary point of f and f(c) is called stationary value of f.

Critical points and ciritical values of a function

Definition: A point x = c such that either f'(c) does not exist or f'(c) = 0 is called a critical point of f and

f(c) is called a critical value of f.

Second derivative Test : If f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c. Then

- (i) x = c is a point of local maxima if f'(c) = 0 and f''(c) < 0. f(c) is called local maximum value.
- (ii) x = c is a point of local minima if f'(c) = 0 and f''(c) > 0.f(c) is called local minimum value.

(iii) The test faits if f'(c) = 0 and f''(c) = 0. we back to first derivative test.

Base on the above discussion we can summarize things in a single graph as given below:

For the function $y = x^3 - 3x^2 + 3x + 1$, the point x = 1 is Ex.

(b) maxima

(a) minima

At what points does the graph of $y = 2x^3 - 6x^2$ equally reach a maximum and a minimum

- (a) (0,0) (maximum) and (2,8) (minimum)
- (b) (0,0) (maximum) and (2,-8) (minimum)
- (c) (0,0) (maximum) and (3,-8) (minimum)
- (d) (2,-8) (maximum) and (0,0) (minimum)

Soln.
$$y = 2x^3 - 6x^2$$

 $\frac{dy}{dx} = 6x^2 - 12x = 6x(x-2)$
 $\frac{d^2y}{dx^2} = 12x - 12 = 12(x-1)$

for critical points $\frac{dy}{dx} = 0 \Rightarrow x = 0, 2$

