	Function	Domain	Range
1.	$\sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
2.	$\cos^{-1} x$	[-1,1]	[0, π]
3.	$\tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
4.	$\csc^{-1}x$	$(-\infty, -1] \cup [1, \infty)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right] = \{0\}$
5.	$\sec^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$[0,\pi] - \left\{\frac{\pi}{2}\right\}$
6.	$\cot^{-1} x$	R	$(0,\pi)$

1.3 Trigonomertic Inequalities:

14. Solving Equations Graphically

From above figure $f(x) = \sin x$ and $g(x) = \frac{x}{10}$ intersect at 7 points So, the number of solutions are 7.

Example: Find the least positive value of *x*, satisfying $\tan x = x + 1$ lies in the interval. **Solution:** Let; $f(x) = \tan x$ and g(x) = x + 1;

From the above figure tan x = x + 1 has infinity many solutions but the least positive value of $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ **Example:** Find the number of solutions of the equation,

$$\sin x = x^2 + x + 1$$

Solution: Let $f(x) = \sin x$ and $g(x) = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$

Which do not intersect at any point, therefore no solution. **Example:** Find the number of solutions of $e^x = x^4$ **Solution:** Let ; $f(x) = e^x$ and $g(x) = x^4$, which could be shown as

: We get 3 intersections.

Example: Find the number of solutions of ; $log_{10}x + x = 0$

Solution: Let ; $f(x) = log_{10} x$ and g(x) = -x; which could be shown as;

From above figure, it is clear they intersect at one points, therefore 1 solution.

Example: Sketch the graph for $y = \sin^{-1} (\sin x)$. **Solution:** As $y = \sin x$ is periodic with period 2π .

Example: Sketch the graph for $y = \cos^{-1}(\cos x)$ Solution: As $y = \cos^{-1}(\cos x)$ is periodic with period 2π .

Thus, the curve $y = \cos^{-1}(\cos x)$.

Example: Sketch the graph for $y = \tan^{-1}(\tan x)$

Solution: As $y = \tan^{-1} (\tan x)$ is periodic with period π .

Thus, the curve for $y = \tan^{-1}(\tan x)$, where y is not defined for $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ **Example:** Sketch the graph for $y = \operatorname{cosec}^{-1}(\operatorname{cosec} x)$

16

Solution: As $y = \csc^{-1}(\csc x)$ is periodic with period 2π .

Here,

	1;	$2n\pi < x < (2x+1)\pi; n \in z$
<i>y</i> = {	-1;	$(2n+1)\pi < x < (2n+2)\pi; n \in z$

3π

 $|\sin x|$ v =sin x

4π

domain = $R - \{ n \pi; n \in z \}$

Range =
$$\begin{cases} 1; & 2n\pi < x < (2x+1)\pi \\ -1; & (2n+1)\pi < x < (2n+2)\pi \end{cases}$$

(ii) Sketch for $y = \frac{|\cos x|}{\cos x}$

$$y = \begin{cases} 1; & \cos x > 0 \\ -1; & \cos x < 0 \end{cases} \Rightarrow \qquad y = \begin{cases} 1; & 2n\pi - \frac{\pi}{2} < x < 2n\pi \frac{\pi}{2} \\ -1; & 2n\pi + \frac{\pi}{2} < x < 2n\pi + \frac{3\pi}{2} \end{cases}$$

So, it could be plotted as:

$$\operatorname{Range} = \left\{ \pm \frac{\pi}{2} \right\}$$
Hence, the graph for $y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is only two
points, shown as:
Thus, the sketch for $y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is only two
points A and B
(iv) Skeech for $y = \log_{1/4}\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4\left(16x^2 - 8x + 1\right)$
Here, $y = \log_{1/4}\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4\left(4x - 1\right)^2$
 $\Rightarrow y = \log_{1/4}\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4\left(2x - \frac{1}{4}\right)^2$
or $y = -\log_4\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4\left(2x - \frac{1}{4}\right)^2$
 $\Rightarrow y = -\log_4\left(x - \frac{1}{4}\right) + \log_4\left(x - \frac{1}{4}\right) + \frac{2}{2}\log_4 4$
 $\Rightarrow y = -\log_4\left(x - \frac{1}{4}\right) + \log_4\left(x - \frac{1}{4}\right) + \frac{2}{2}\log_4 4$
 $\Rightarrow y = 1$, wherever; $\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4 x + (4x - 1)$ ENDEAVOUR
 $\Rightarrow \text{ Domain} = \left(\frac{1}{4}, \infty\right)$
Here $y = 1 + 3\left[\log\left(\sin x\right) + \log(\cos x)\right]$
When ever $|\sin x| \neq 0$ and $|\csc x|$ $\neq 0$
i.e., $y = 1 + 3(\log|1)$; wherever $x \notin n\pi; n \in \mathbb{Z}$
 $\Rightarrow y = 1$ (as; $\log 1 = 0$)
 \therefore Domain = $\mathbb{R} - \{ n\pi; n \in \mathbb{Z} \}$
Range = {1}
 \therefore it could plotted as:

CARCEER ENDEAVOUR

(vi) Sketch for $y = 1 + 3(\log \sin x + \log \csc x)$

Here y = 1+3 (log sinx. cosecx) whenever sin > 0 and cosec x > 0

- $\Rightarrow y = 1 + 3\log 1; \qquad x \in (2n\pi, (2n+1)\pi), n \in \mathbb{Z}$
- or y=1; whenever $x \in (2n\pi, (2n+1)\pi)$

$$\therefore$$
 $y = 1 + 3(\log \sin x + \log \cos ecx) = 1$ whenever $x \in (2n\pi, (2n+1)\pi), m \in \mathbb{Z}$

Example: Find the number of solution for ; $[x] = \{x\}$. where $[\bullet] \{\bullet\}$ represents greatest integer and factional part of x.

Solution: As
$$[x] \in \mathbb{Z}$$
 and $\{x\} \in \mathbb{Z}$ only if $\{x\} = 0$
 $\therefore [x] = \{x\} = 0 \Rightarrow x = [x] + \{x\} = 0$

 \therefore only one solution

Example: Find the number of solutions of $4\{x\} = x + [x]$

where {.}.[.] represents fractional part and greatest integer function.

Solution: As we know, to find number of solutions of two curves we should find the point of intersection of two curves.

