Now, we will study about intervals, neighbourhoods, interior points, open sets, adherent points, closed sets, limit points, some examples and important results about the relations between sets.

3.1 Interval :

Let $S \subseteq \mathbb{R}$ then S is said to be an interval if for any $x, y \in S$ with $x \le t \le y \forall t \implies t \in S$

Note:

- **1.** Singleton set is also an interval.
- 2. If S is interval sup $S = \beta$, inf $S = \alpha$, then $\alpha \beta$ is called length of interval.
- 3. When neither of the sup and the inf are member of the interval then the interval is open and is denoted by (α, β) .
- 4. If the sup and the inf are member of the interval then interval is called closed and is denoted by $[\alpha, \beta]$.
- 5. Every subset of interval of finite length is bounded.
- 6. Set of natural numbers is not an interval.
- 7. Similarly Q and Q^C are not intervals but their union and intersection both are interval.(Empty set is an interval).

3.2 Neighbourhood:

 $S \subseteq \mathbb{R}, a \in \mathbb{R}$, S is said to be a neighbourhood of 'a' if \exists an open interval I s.t. $a \in I \subseteq S$

3.3 Interior Point:

Let $S \subseteq R$ and $a \in \mathbb{R}$. Then 'a' is said to be an interior point of S if S is a nbd of 'a'. i.e., if $\exists \delta > 0$ s.t. $(a - \delta, a + \delta) \subset S$.

3.4 Open set:

 $S \subseteq \mathbb{R}$, we say S is open if it is a neighbourhood of all of it's points (elements) i.e., S is open its every point is interior point.

Remark: A set fails to be open if any of it's element is not an interior point.

Examples

- 1. So, ϕ is open.
- 2. Every open interval is an open set, but not conversely.
- 3. Non-empty open set is uncountable.
- 4. Set of rational numbers is not an open set since, no point of this set is an interior point.

3.5 Adherent point:

We say 'a' is an adherent point of S if for every $\delta > 0$, $(a - \delta, a + \delta) \cap S \neq \phi$.

Remarks:

- 1. All the elements of a set are adherent points but not conversely.
- **2.** A Non-member can be an adherent point. e.g. $\sqrt{2}$ is adherent point of Q as $(\sqrt{2} \delta, \sqrt{2} + \delta) \cap Q \neq \phi$ i.e., every nbd of '*a*' contains at least one element of S.

3.6 Limit point:

Let $a \in \mathbb{R}$ and $S \subseteq \mathbb{R}$ be any set. We say 'a' is a limit point of S, if $(a - \delta, a + \delta) \cap S - \{a\} \neq \phi$ for every $\delta > 0$. i.e., every nbd of 'a' contains one element of S other than 'a'.

Example:

- **1.** Limit point of $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is 0
- 2. For (a, b), each point of this set is a limit point also. 'a' and 'b' does not belong to the set but they are also limit points of (a, b).
- 3. In [2, 3], all limit points belong to the set.
- **4.** For $(a,b) \cap Q$, the collection of limit points of this set is [a, b]

3.7 Closed set:

Let S be any subset of ${\mathbb R}$. We say S is closed in ${\mathbb R}$ if ${\mathbb R}$ –S is open.

Remark:

- 1. It is possible to have a set which is neither open nor closed e.g. Q.
- 2. It is possible to have a set which is both closed and open. e.g. Φ and \mathbb{R} .

Example:

- 1. Any closed interval is a closed set. [a, b]
- 2. Set of natural numbers is a closed set. Since it's compliment can be written as countable union of open sets. Hence it's compliment is an open set.

-2 -1 0 1 2 3 4 5 6

 $\mathbb{R} - \mathbb{N} = (-\infty, 1) \cup (1, 2) \cup (2, 3) \cup (3, 4) \cup \dots$

- 3. Set of irrational numbers (Q^C) is not a closed set since it's compliment is not an open set.
- 4. The set $[0, 1] \cup [2, 3]$, which is not an interval, is closed.
- 5. The set \mathbb{R} of real numbers is open as well as closed.
- 6. The set \mathbb{Z} has no limit point, for a nbd $]m \frac{1}{2}, m + \frac{1}{2}[$ of $m \in \mathbb{Z}$, contains no point of \mathbb{Z} other than m.

3.8 Derived sets:

The set of all limit points of a set S is called the derived set of S and is denoted by S'.

- **Example:** Obtain the derived sets: **EER ENDEAVOUR 1.** $\{x: 0 \le x < 1\}$
- **2.** $\{x: 0 < x < 1, x \in Q\}$
- **3.** $\{1+\frac{1}{n}: n \in \mathbb{N}\}$
- 4. $\left\{\frac{1}{m}+\frac{1}{n}:m\in\mathbb{N},n\in\mathbb{N}\right\}$
- 5. Set of all irrational numbers

Answers.

- **1.** [0, 1]
- **2.** [0, 1]
- **3.** {1}
- 4. $\{\frac{1}{n}: n \in \mathbb{N}\} \cup \{0\}$ is the set of all limit points.
- 5. Set of real numbers is the derived set of rational numbers.

Remarks:

- 1. A Neighbourhood is never a finite set.
- **2.** A real number '*a*' is a limit point of $S \subseteq \mathbb{R}$ iff every nbd of '*a*' contains infinite elements of S.
- **3.** A finite set can not have limit point.
- **4.** Every limit point is an adherent point but not conversely. E.g. Finite sets have adherent points but no limit point.
- 5. Set of limit points is contained in the set of adherent points.
- 6. A Non-member adherent point is a limit point.

Definition: Isolated points:

Let S be any set of \mathbb{R} , 'a' \in S. Then 'a' is called an isolated point of S if it is not a limit point of S. **Table for some most common and important sets.**

Set	Finite	Infinite	Open	Closed	Derived set	Interior set
{1/n}	×	\checkmark	×	×	{0}	ø
{1, 2, 3}	~	×	×	\checkmark	φ	ø
Q	×	1	×	×	\mathbb{R}	¢
\mathbb{N}	×		X	✓ ✓	ø	φ
(a,b]	×	\checkmark	X	×	[<i>a</i> , <i>b</i>]	(a, b)
[<i>a</i> , <i>b</i>]	×	\checkmark	×	~	[<i>a</i> , <i>b</i>]	(<i>a</i> , <i>b</i>)
$[a,b] \cap \mathbb{Q}$	×	\checkmark	×	×	[<i>a</i> , <i>b</i>]	φ
\mathbb{R}	×	\checkmark	\checkmark		\mathbb{R}	\mathbb{R}
φ	~	×		~	φ	φ

3.9 Bolzano-Weierstrass Theorem for sets:

Every infinite bounded set has a limit point.

Note: Bounded is not necessary for an infinite set S to have a limit point. The set

 $S = \{\frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, 4, \frac{1}{5}, 5, \dots\}$ is unbounded and infinite and has the limit point 'O'. The unbounded interval $]a, \infty[$ has infinitely many limit points.

Some examples:

1. If **S** and **T** are subsets of real numbers,

(i) $S \subseteq T \Rightarrow S' \subseteq T'$ and (ii) $(S \cup T)' = S' \cup T'$

2. (i) If S, T are subsets of \mathbb{R} , then $(S \cap T)' \subseteq S' \cap T'$.

(ii) Show that $(S \cap T)'$ and $S' \cap T'$ may not be equal.

Soln. Let S = (1, 2) and T = (2, 3), so,

$$S \cap T = \phi \Longrightarrow (S \cap T)' = \phi' = \phi$$

Also, S' = [1, 2], T' = [2, 3]

 $\therefore S' \cap T' = \{2\}$. Thus, $(S \cap T)' \neq S' \cap T'$

SOLVED EXAMPLES

1. For each $j = 1, 2, 3, ..., let A_i$ be a finite set containing at least two distinct elements. Then

(a)
$$\bigcup_{j=1}^{\infty} A_j$$
 is a countable set
(b) $\bigcup_{n=1}^{\infty} \prod_{j=1}^{n} A_j$ is uncountable
(c) $\prod_{j=1}^{\infty} A_j$ is uncountable
(d) $\bigcup_{j=1}^{\infty} A_j$ is uncountable
[(MCQ) CSIR-NET/JRF : June-2012]

Soln. For each j = 1, 2, 3, ...

 A_j = finite set containing atleast two distinct elements. Thus, every A_j is countable. Hence, option (a) is correct and (d) is incorrect because, union of countable number of finite set is countable. As 2^N is uncountable, so option (c) are uncountable. **Hence, option (a) and (c) are correct.**

2. Let X denote the two point set {0, 1} and write $X_j = \{0, 1\}$ for every $j = 1, 2, 3, \dots$ Let $Y = \prod_{i=1}^{\infty} X_j$ which of

the following is/are correct ?(a) *Y* is countable set

(b) card Y = card [0, 1]

(d) Y is uncountable

(c) $\bigcup_{n=1}^{\infty} \left(\prod_{j=1}^{n} X_{j} \right)$ is uncountable

[(MCQ) CSIR-NET/JRF : June-2011]

Soln. $Y = \prod_{j=1}^{\infty} X_j$ is countable

$$\therefore \bigcup_{i=1}^{n-1} \prod_{j=1}^{n-1} X_j$$
 is countable

(\because countable union of countable sets is countable)

Since $|Y| = 2^{|\mathbb{N}|} = |\mathbb{R}| = |[0,1]|$

Hence, option (b) and (d) are correct.

Some Important Results:

- **1.** A set is closed iff its complement is open.
- 2. The intersection of an arbitrary family of closed sets is closed.
- 3. The union of two closed sets is a closed set.

Remark:

The result can be extended to the union of a finite number of closed sets but not for an arbitrary family. For example.

 $S_n = [a + \frac{1}{n}, a + 2]$, for $n \in \mathbb{N}$ and $a \in \mathbb{R}$

Then $\bigcup_{n \in \mathbb{N}} S_n =]a, a+2]$, which is not a closed set.

- 4. The derived set of a set is closed.
- 5. The derived set of a bounded set is bounded.

21

SOLVED EXAMPLES

1.	Which one of the following set is not countable?		
	(a) \mathbb{N} , where $r \ge 1$ and \mathbb{N} is the set of natural numbers		
	(b) $\{0,1\}^{\mathbb{N}}$, the set of all the sequences which takes values 0 and 1		
	(c) \mathbb{Z} , set of integers		
	(d) $\sqrt{2}\mathbb{Q}$, where \mathbb{Q} is the set of rational numbers	[D.U. 2015]	
Soln.	$\{0, 1\}^{\mathbb{N}}$, the set of all sequence which takes value 0 and 1. (a), (c) and (d) are countable	by definition.	
	Hence, correct option is (b).		
2.	Let <i>X</i> be a countably infinite subset of \mathbb{R} and <i>A</i> be a countably infinite subset of <i>X</i> . $X \setminus A = \{x \in X \mid x \notin A\}$	Then the set	
	(a) is empty (b) is a finite set		
	(c) can be a countably infinite set (d) can be an uncountable set	[D.U. 2016]	
Soln.	Let $X = \mathbb{Z} \subset \mathbb{R}$ and $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{R}$ then $\mathbb{Z} \setminus \mathbb{N} \neq \phi$, not finite, $X \setminus A$ can't be uncountable as X is	countable.	
	Although, it can be empty $(X = A)$ or finite (if $X = \mathbb{Z}^*, A = \mathbb{N}$)		
	Hence, correct option is (c).		
3.	The subset $A = \{x \in \mathbb{Q} : x^2 < 4\}$ of \mathbb{R} is		
	(a) bounded above but not bounded below		
	(b) bounded above and sup $A = 2$		
	(c) bounded above but does not have a supremum		
	(d) not bounded above	[D.U. 2016]	
Soln.	$A = (-2, 2) \cap \mathbb{Q}$		
	bounded above and sup $A = 2$ as for every $\in > 0 \exists u \in \mathbb{Q} \cap (-2, 2)$ such that $2 - \in < u$		
	Hence, correct option is (b).		
4.	The subset $A = \{x \in \mathbb{Q} : -1 < x < 0\} \cup \mathbb{N}$ of \mathbb{R} is		
	(a) bounded, infinite set and has a limit point in $\mathbb R$		
	(b) unbounded, infinite set and has a limit point in $\mathbb R$		
	(c) unbounded, infinite set and does not have a limit point in $\mathbb R$		
	(d) bounded, infinite set and does not have a limit point in $\mathbb R$	[D.U. 2016]	
Soln.	Unbounded infinite set and has limit points in \mathbb{R} . Hence, correct option is (b).		

PRACTICE SET-1

[Bounded sets, Interior points, Limits points, Open and closed sets]

- 1. True / False
 - (i) A subset of bounded set is bdd.
 - (ii) Finite intersection of nbd need not be nbd.
 - (iii) Open set may or may not be open interval.
 - (iv) A° is the largest open set contained in A. [where $A^{\circ} \rightarrow$ set of interior points of A]
 - (v) For any set A; $(A^{\circ})^{\circ} = A^{\circ}$
 - (vi) The intersection of arbitrary family of closed sets need not be closed.
 - (vii) Isolated points of a set are always countable.

(viii) Every interior point of a set is a limit point and conversely.

- (ix) A is closed iff $\overline{A} = A$. [where \overline{A} , closure of A]
- (x) Adherent point may or may not be limit point.
- **Soln.** (i) T, (ii) F, (iii) T, (iv) T, (v) T, (vi) F, (vii) T, (viii) F, (ix) T, (x) T.
- 2. One word answer type questions:
 - (a) Find the intersection of sets $S_n = (-\frac{1}{n}, \frac{1}{n}), n \in \mathbb{N}$.
 - (b) Obtain the derived set of $\{[0,8] \cap Q\} \cup \{1,2,3\} \cup (-3,0)$
 - (c) What can you say about closedness of the set $\{1, -1, 1\frac{1}{2}, -1\frac{1}{2}, 1\frac{1}{3}, -1\frac{1}{3}, \dots\}$
 - (d) Find the supremum and the infimum of the above set.
 - (e) Is the supremum or infimum lying in the derived set of the above set.
 - (f) What is Closure of Q and interior of Q.

Soln. (a) {0}, (b) [-3, 8], (c) closed, (d) $\sup = \frac{3}{2}$, $\inf = \frac{-3}{2}$

(e) No (f) R and ϕ .

- 3. Multiple choice with single correct answer type question:
 - (i) Let S be an infinite subset of \mathbb{R} such that $S \cap Q = \phi$ which of the following is true.
 - (a) S must have a limit point which belongs to Q.
 - (b) S must have a limit point which belongs to \mathbb{R}/Q .
 - (c) S cannot be a closed set in \mathbb{R} .
 - (d) \mathbb{R}/S must have a limit point which belongs to S.
 - (ii) Consider the following subsets of \mathbb{R} :

$$E = \left\{\frac{n}{n+1}, n \in \mathbb{N}\right\}, F = \left\{\frac{1}{1-x}, 0 \le x < 1\right\}$$

then

(a) Both E and F are closed.

(c) E is not closed and F is closed.

(iii)
$$S = \left[(-1)^n \left(\frac{1}{4} - \frac{4}{n} \right), n \in \mathbb{N} \right]$$
 then

(b) E is closed and F is not closed.

(d) Neither E nor F is closed. Ans. (c)

Ans. (d)

23

(a) sup $S = \frac{1}{4}$ and $\inf S = \frac{1}{4}$	(b) sup $S = \frac{15}{4}$ and $\inf S = -\frac{7}{4}$					
(c) sup $S = \frac{15}{4}$ and $\inf S = -\frac{1}{4}$	(d) None of these	Ans. (b)				
(iv) Consider the statement						
$\boxed{1}$ $l \in \mathbb{R}$ is limit point of $A \cup B$ iff <i>l</i> is limit point	int of A or limit point of B.					
$2 l \in \mathbb{R}$ is limit point of $A \cap B$ iff <i>l</i> is limit point of $A \cap B$	2 $l \in \mathbb{R}$ is limit point of $A \cap B$ iff <i>l</i> is limit point of A and limit point of B. Then					
(a) 1 is correct 2 incorrect	(b) 2 correct 1 incorrect					
(c) Both are correct	(d) Both are incorrect	Ans. (d)				
(v) If $S = \{x : x^2 < 2 \text{ and } x \text{ is rational}\}$. Then derive	ved set of S is					
(a) $(-\sqrt{2},\sqrt{2})$	(b) $[-\sqrt{2}, \sqrt{2}]$					
(c) [-2, 2]	(d) (-2, 2)	Ans. (b)				
(vi) Select the correct statement:						
(a) Every bounded set is closed	(b) Every unbounded set is open					
(c) Every closed set is countable	(d) Every non-empty open set is unco	ountable				
	An	s. (d)				
(vii) S be subset of \mathbb{R} and $\inf S = \sup S$, then						
(a) S is empty	(b) S is singleton					
(c) S finite but may not be singleton	(d) None of these	Ans. (c)				
Multiple choice with one or more correct answer ty	pe questions:					
(i) Choose the correct statement (s)						
(a) Non-empty countable set cannot be open						
(b) For a non-empty set uncountability is a new	cessary condition for the set to be open.					
(c) Uncountability is sufficient condition for a set to be open.						
(ii) Choose the correct statement (s)	JEAVOUR					
(ii) Choose the correct statement (s) (a) If S and T are two non-empty subset of \mathbb{R} then sup (S \cup T) = max {sup S sup T}						
(a) If S and T are two non-empty subset of \mathbb{R} then $\inf (S \cup T) = \max \{\sup S, \sup S, \sup T\}$						
(c) If A and B are two non-empty subset of \mathbb{R} then sup $(A \cap B) = \min\{\{ s \mid n \in S, m \in I\}\}$						
(d) If A and B are two non-empty subset of \mathbb{R}	then sup $(A \cap B) = \max$. {inf A, inf B}	}				
(iii) Let $E \subset \mathbb{R}, E \neq \phi$. Let (1), (2) and (3) denote	the following conditions: choose correct	•				
(1) E is infinite (2) E is bounded	(3) E is closed					
(a) 1 is necessary for E to have a limit point.						
(b) 1 and 2 together are sufficient for E to have a limit point						
(c) 1 and 3 together are sufficient for E to have a have a limit point						
(d) 3 is sufficient for every limit point of E to belong to E						

4.

- (iv) Let R be a set which is bounded below and S is the set of all its lower bounds. Then which of the following is incorrect?
 - (a) Both R and S have finite elements
 - (b) S has supremum and R has infimum
 - (c) Both S and R have infimum
 - (d) Both S and R have supremum
- (v) Select the correct statement about the set $A = \{1, 1+\frac{1}{3}, 1+\frac{1}{3}+\frac{1}{3^2}, \dots, 1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\dots, +\frac{1}{3^{n-1}}\}$
 - (a) The set A is bounded
 - (b) The inf A is 1
 - (c) The set A has its largest elements
 - (d) None of these

PRACTICE SET - 1

Answers key				
4. (i) (a), (b), (d)	(ii). (a), (b) for (c), (d) counter axis (1, 2) and (2, 3)			
(iii).(a), (b)	(iv).(a), (c), (d) (v). (a), (b)			
	CAREER ENDEAVOUR			

