210

CHEMISTRY-CY

Q.1 - Q.25: Carry ONE mark each.

- 1. For an enzyme catalyzed reaction, the plot of inverse of initial rate against inverse of initial substrate concentration is linear with slope 0.16 s and intercept $2.12 \text{ mol}^{-1}\text{L}$ s. The estimated value of Michaelis constant (in mol L⁻¹, rounded off to two decimal places) is ______
- 2. When three moles of helium is mixed with one mole of neon at constant temperature and pressure (25°C, 1 atm), the entropy of mixing (in JK⁻¹, rounded off to two decimal places) is _____
- 3. Fluorescence quantum yield and fluorescence lifetime of a molecule are 0.4 and 5×10^{-9} s, respectively. If the fluorescence decay rate constant is $Y\times10^7$ s⁻¹, the vlaue of Y (rounded off to nearest ineger) is
- 4. In oxyhemocyanin, the coordination number, mode of oxygen binding, color and the net magnetic behaviour of copper ions, respectively are [Given: atomic number of Cu is 29)
 - (a) Five, $\mu \eta^2 O_2^-$, colorless and paramagnetic
 - (b) Five, $\mu \eta^2 \eta^2 O_2^{2-}$, blue and diamagnetic
 - (c) Four, $\mu \eta^1 \eta^1 O_2^-$, colorless and paramagnetic
 - (d) Four, $\mu \eta^1 \eta^1 O_2^{2-}$, blue and diamagnetic.
- 5. The maximum number of microstates for d² electronic configuration is _____
- 6. At 25°C, the emf (in volts, rounded off to three decimal places) of the cell, $Ag \mid AgBr(s) \mid Br^{-}(a=0.20)$, $Cu^{2+}(a=0.48)$, $Cu^{+}(a=0.24) \mid Pt$ is ______
- (Given: The standard emf of the cell is 0.082 V; $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; $F = 96500 \text{ C mol}^{-1}$)
- 7. The correct statement regarding the substitution of coordinated ligands in Ni(CO)₄ and Co(NO)(CO)₃ is (Given: Co–N–O bond is nearly linear; atomic numbers of Co and Ni are 27 and 28, respectively)
 - (a) Both Ni(CO)₄ and Co(NO)(CO)₃ follow associative pathway.
 - (b) Ni(CO)₄ and Co(NO)(CO)₃ follow dissocitive and associative pathways, respectively
 - (c) Ni(CO)₄ and Co(NO)(CO)₃ follow associative and dissociative pathways, respectively
 - (d) Both Ni(CO)₄ and Co(NO)(CO)₃ follow dissociative pathway.
- 8. The activity of 'm' molal CuSO₄ solution can be expressed in terms of its mean activity coefficient (γ_{\pm}) as
 - (a) $16 \, m^4 \gamma_{\pm}^4$
- (b) $4 m^3 \gamma_{\pm}^3$
- (c) $m^2 \gamma_{\pm}^2$
- (d) $108 \, m^5 \gamma_+^5$

9. Major product formed in the given reaction is

$$\alpha$$
-D-glucose $\frac{\text{acetone(excess)}}{\text{H}^+}$

- 10. For a cubic crystal system, the powder X-ray diffraction pattern recorded using Cu K_{α} source $(\lambda = 1.54 \text{ Å})$ shows a peak at 33.60° (2θ) for (111) plane. The lattice parameter 'a' (in Å, rounded off to two decimal places) is ______
- 11. The character table for a pyramidal AB_3 molecule of C_{3v} point group is given below:

C_{3v}	E	$2C_{3}$	$3\sigma_v$		
$\overline{A_1}$	1	1	1	z.	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	-
E	2	-1	0	$(x,y)(R_x,R_y)$	$\frac{x^2 + y^2, z^2}{\left(x^2 - y^2, xy\right)(xz, yz)}$

The reducible representation of pyramidal AB₃ is

$$\begin{array}{c|cccc} C_{3\nu} & E & 2C_3 & 3\sigma_{\gamma} \\ \hline \Gamma & 12 & 0 & 2 \end{array}$$

The correct option representing all the normal Raman active modes of pyramidal AB₃ is (a) $2A_1 + 2E$ (b) 3E (c) $3A_1 + A_2 + E$ (d) $A_1 + A_2 + 2E$

12. Major product formed in the following reaction is

Among the following species, the one that has pentagonal shape is [Given: atomic number of O, F, S, I and Xe are 8, 9, 16, 53 and 54, respectively]

- (a) $\left[XeF_{5} \right]^{-}$
- (b) XeOF₄
- (c) IF₅
- (d) $\left[SF_{5} \right]^{-}$

14. In the following reaction sequence,

15.

(a) 4aS, 8aR

(b) 4aR, 8aS

(c) 4aR, 8aR

(d) 4aS, 8aS

Major product formed in the following transformation is 16.

$$(c) \qquad (d) \qquad (d)$$

17. In an NMR spectrometer operating at a magnetic field strength of 16.45 T, the resonance frequency (in MHz, rounded off to one decimal place) of ¹⁹F nucleus is ______

[Given: g factor of 19 F = 5.255; $\beta_N = 5.05 \times 10^{-27} \ J \ T^{-1}$; $h = 6.626 \times 10^{-34} \ Js$]

18. Among the following, the suitable reagents for the given transformation is:

- (a) NaBH₄/CeCl₃.7H₂O
- (c) Li/Liq. NH₃

19.

- (b) H_2N-NH_2/KOH , Δ
- $(d) H_2$, Pd/C

The total number of aromatic species is _____

- 20. In a uranium recovery process, an aqueous solution of uranyl ion is evaporated, dried in air at 400°C and subsequently reduced with hydrogen at 700°C to obtain a uranium compound (X). The oxidation state of uranium in X is ______ [Given: atomic number of U is 92]
- 21. Major product formed in the following reaction sequence is

$$(b) \begin{picture}(b){0.5\textwidth} \hline (b){0.5\textwidth} \hline (b){0.5\textwidth} \hline (c){0.5\textwidth} \hline (c$$

- 22. A solution containing a metal complex absorbs at 480 nm with molar extinction coefficient of 15, $000 \text{ L mol}^{-1}\text{cm}^{-1}$. If the path length of the cell is 1.0 cm and transmittance is 20.5 %, the concentration (in mol L⁻¹) of the metal complex is
 - (a) 1.37×10^{-5}
- (b) 4.59×10^{-5}
- (c) 8.75×10^{-5}
- (d) 2.29×10^{-5}
- 23. Among the following linear combination of atomic orbitals, the **CORRECT** representation of the lowest unoccupied π -molecular orbital of butadiene is

(a)
$$\psi = 0.372\phi_1 + 0.602\phi_2 + 0.602\phi_3 + 0.372\phi_4$$

(b)
$$\psi = 0.602\phi_1 - 0.372\phi_2 - 0.372\phi_3 + 0.602\phi_4$$

(c)
$$\psi = -0.372\phi_1 + 0.602\phi_2 - 0.602\phi_3 + 0.372\phi_4$$

(d)
$$\psi = 0.602\phi_1 + 0.372\phi_2 - 0.372\phi_3 - 0.602\phi_4$$

24. In the following reaction,

the number of peaks exhibited by the major product (P) in its broadband proton decoupled ^{13}C NMR spectrum is

- 25. The CORRECT statement about hexagonal boron nitride is
 - (a) It is reactive towards fluorine
 - (b) It has same layer stacking as that of graphite
 - (c) It is a good electrical conductor
 - (d) It has lower thermal stability in air compared to that of graphite.

Q.26 - Q.55: Carry TWO marks each.

26. The rate of solvolysis of the given compounds is in the order:

(S)

$$X = \begin{cases} 0 \\ X = \\ -\xi = 0 \end{cases}$$
 NO_2

(a) R > T > Q > S > P

(b) Q > T > R > P > S

(c) T > Q > R > P > S

- (d) T > R > Q > S > P
- 27. Assuming no interaction between vibrational and rotational energy levels in HF, the frequency (in cm⁻¹, rounded off to the nearest integer) of the R branch line originating from J = 4 in its IR spectrum is

[Given: Rotational constant for HF = 19.35 cm⁻¹; $\overline{v}_0 = 4138.52 \text{ cm}^{-1}$]

- 28. The total number of g|| lines expected in the EPR spectrum of a solution of bis (salicylaldimine) coppper (II) having pure ⁶³Cu and ¹⁴N at 77K is ______ [Given: I values of ⁶³Cu, ¹⁴N and ¹H are 3/2, 1 and 1/2, respectively]
- 29. Major product formed in the following synthetic sequence is

30. Major products (P) and (Q), formed in the reactions given below are

Me
$$Ag_2O$$
 P

Me Ag_2O P

Me Ag_2O Q

The **CORRECT** combination of L1 and L2 among H⁻, NO⁻, MeCH²⁻ and CO, that will satisfy the 18 31. electron rule for both metal centers in the following neutral molecule is

(Given: atomic number of Ru is 44)

- (a) MeCH²⁻, CO
- (b) H-, NO
- (c) MeCH²⁻, NO⁻
- (d) H⁻, CO

In the electronic absorption spectrum of an aqueous solution of $\left[\text{Ni} \left(\text{NH}_3 \right)_6 \right]^{2+}$, a very weak band is 32. observed between the bands due to the transitions ${}^3A_{2g} \longrightarrow {}^3T_{2g}$ and ${}^3A_{2g} \longrightarrow {}^3T_{lg}(F)$. The transition responsible for the very weak band is [Given: atomic number of Ni is 28)

(a)
$${}^{3}A_{2g} \longrightarrow {}^{1}E_{g}$$

$$(b) {}^{3}A_{2g} \longrightarrow {}^{1}T_{2}$$

$$(c) {}^{3}A_{2g} \longrightarrow {}^{1}T_{1}$$

CAREER ENDEAVOUR

(a)
$${}^{3}A_{2g} \longrightarrow {}^{1}E_{g}$$
 (b) ${}^{3}A_{2g} \longrightarrow {}^{1}T_{2g}$ (c) ${}^{3}A_{2g} \longrightarrow {}^{1}T_{1g}$ (d) ${}^{3}A_{2g} \longrightarrow {}^{1}A_{2g}$

The van der Waals constants a and b for gaseous CO are given as 1.49 L_2 atm mol⁻² and 0.0399 L 33. mol⁻¹, respectively. The fugacity (in atm, rounded off to two decimal places) of CO at 35°C and 95 atm is [Given: $R = 0.082 L atm K^{-1} mol^{-1}$).

Among the following. 34.

$$\left[B_{12}H_{12}\right]^{2^{-}}, \left[Ni_{5}\left(CO\right)_{12}\right]^{2^{-}}, \left[C_{2}B_{9}H_{11}\right]^{2^{-}}, Rb_{6}\left(CO\right)_{16}, Os_{6}\left(CO\right)_{20}, B_{5}H_{11}, B_{6}H_{10}$$
 the total number of species having nido structure is ______
 [Given: atomic numbers of H, B, C, O, Ni, Rh and Os are 1, 5, 6, 8, 28, 45 and 76, respectively]

35. The following table lists the reaction/conversion catalyzed by metalloenzymes.

Reaction/conversion

(P)
$$R - H + O_2 + 2H^- + 2e^- \rightarrow R - OH + H_2O$$

- (Q) $O_2 + 4e^- + 8H^+ \rightarrow 2H_2O + 4H^+$
- $(R) 2H_2O_2 \rightarrow 2H_2O + O_2$
- (S) $NH_2 CH_2 CO_2H \rightarrow NH_2 CH(CH_2OH) CO_2H$

- Metalloenzyme
- (I) Co-enzyme B₁₂
- (II) Cytochrome P-450
- (III) Cytochrome c oxidase
- (IV) Catalase

The **CORRECT** combination is

(a) P-IV, Q-III, R-II, S-I

(b) P-II, Q-III, R-IV, S-I

(c) P-I, Q-IV, R-III, S-II

(d) P-II, Q-I, R-III, S-IV

36. Among the following,

the total number of compounds showing characteristics carbonyl stretching frequency less than $1700\,\mathrm{cm^{-1}}$ in their IR spectra is _____

37. The **CORRECT** 'voltage (E) versus time' excitation signal used in cyclic voltammetry is

- 38. ΔG_f^0 and ΔH_f^0 for Fe(g) are 370.7 kJ mol⁻¹ and 416.3 kJ mol⁻¹ at 298 K, respectively. Assuming ΔH_f^0 is constant in the interval 250 K to 375 K, ΔG_f^0 (rounded off to the nearest integer) for Fe(g) at 375 K is (a) 325 kJ mol⁻¹ (b) 338 kJ mol⁻¹ (c) 310 kJ mol⁻¹ (d) 359 kJ mol⁻¹
- The frequency (in cm⁻¹, rounded off to two decimal places) for pure rotational in the spectrum of NO molecule due to change in the quantum number from J=1 to J=2 is [Given: Moment of inertia of NO = 1.6427×10^{-16} kg m²; $h=6.626\times 10^{-34}$ J s; $c=3\times 10^8$ m/s]
- 40. For the ring opening reaction of cyclopropane to propene at 25°C, the pre-exponential factor is 4.3×10^{15} s⁻¹. The entropy of activation (in JK⁻¹ mol⁻¹, rounded off to two decimal places) is _____ [Given: $h = 6.626\times10^{-34}$ Js; $k_B = 1.38\times10^{-23}$ JK⁻¹; R = 8.314 JK⁻¹mol⁻¹]
- 41. In the following reaction sequence, the major product (A) and (R) are

$$\mathsf{Me} \xrightarrow{\mathsf{SiMe}_3} (\mathsf{Q})$$

$$\mathsf{Me} \xrightarrow{\mathsf{(i)} \ (\mathsf{Ph}_3\mathsf{P})_2\mathsf{PdCl}_2, \ \mathsf{CuI}, \ \mathsf{Et}_3\mathsf{N}, \ \Delta}} (\mathsf{P})$$

$$\mathsf{Major \ product}$$

$$\mathsf{(iii)} \ \mathsf{O}_{\mathsf{BH}}$$

$$\mathsf{Major \ product}$$

$$\mathsf{(iii)} \ \mathsf{NaOMe} (\mathsf{R})$$

(a) Me
$$\longrightarrow$$
 and Me \longrightarrow (R)

(c) Me
$$\longrightarrow$$
 and Me \longrightarrow (R)

- 42. The experimental magnetic moment (3.4 BM) of a hydrated salt of Eu³⁺ at 27°C is significantly different from the calculated value. The difference is due to [Given: atomic number of Eu is 63)
 - (a) Population of electrons at higher J level(s) via thermal excitation
 - (b) Pairing of electrons in f-orbitals
 - (c) strong ligand field splitting of f-orbitals
 - (d) strong spin-orbit coupling
- 43. Adsorption of N₂ on TiO₂ was carried out at 75 K. A plot of $\frac{z}{(1-z)V}$ versus $z(z=p/p^0)$ gives a straight line with an intercept, 4.0×10^{-6} mm⁻³ and slope, 1.0×10^{-3} mm⁻³. The volume (rounded off to the nearest integer) corresponding to the monolayer coverage is

 (a) 555 mm³ (b) 690 mm³ (c) 996 mm³ (d) 785 mm³
- 44. The CORRECT statement with respect to the stereochemistry of α-hydroxy acids P and Q formed in the following reaction is

$$(P) \xrightarrow{OH} Me \xrightarrow{Br} CO_2H \xrightarrow{Ag_2O} (Q)$$

$$H_2O, OH$$

- (a) P is formed with inversion of configuration and Q with retention of configuration
- (b) P is formed with retention of configuration and Q with inversion of configuration
- (c) Both P and Q are formed with retention of configuration
- (d) Both P and Q are formed with inversion of configuration

45. Major product formed in the following reaction sequence is

46. A compound with molecular formula $C_{10}H_{12}O_2$ showed a strong IR band at -1720 cm⁻¹, a peak at m/z 122 in the mass spectrum and the following ¹H NMR signals : δ 8.1–8.0 (2H, m), 7.6–7.5 (1H, m), 7.5–7.3 (2H, m), 4.3 (2H, t), 1.8 (2H, sextet) and 1.0 (3H, t). The structure of the compound is

- 47. At 30°C, the vapor pressure and density of a 1.0 M aqueous solution of sucrose are 31.207 mm Hg and 1.1256 g/mL, respectively. If the vapor pressure of pure water at 30°C is 31.824 mm Hg, the activity coefficient (rounded off to three decimal places) of water in the given solution is _____ [Given: The molar mass of sucrose = 342.3 g mol⁻¹)
- 48. Among the following sets,

Ph.....Ph Ph Ph.....Ph and
$$\frac{1}{\underline{\underline{\underline{H}}}}$$
 $\frac{\underline{\underline{\underline{H}}}}{\underline{\underline{\underline{H}}}}$ Me Me Me Me

the total number of set(s) of diaster eomeric pair(s) is

The % error (rounded off to two decimal places) in the ground state energy of a particle in a one dimensional 49. box of length 'a' described by a trial variation function $\varphi = x(a-x)$, where $0 \le x \le a$, is ____

[Given: The true ground state energy of the above system is $h^2/8 ma^2$; $\int \varphi^* \varphi d\tau = a^5/30$)

Major products (P) and (Q), in the given reaction sequence, are 50.

$$CO_2Et \xrightarrow{(i) 9-BBN (1 \text{ eq.})} (P) \xrightarrow{(i) MsCl/Et_3N} (Q)$$

$$(ii) NaOH$$

$$(iii) NaOH$$

$$(iii) H_2, (Ph_3P)_3RhCl$$

(a)
$$CO_2Et$$
 and CO_2Et and CO_2Et CO_2ET

(c)
$$(P)$$
 (Q) (Q)

The fission reaction of ${}^{235}_{92}U$ with thermal neutron is represented below. 51.

 $^{99}_{41}\,\mathrm{Nb}\,$ and $^{133}_{51}\,\mathrm{Sb}\,$ are the primary fission fragment pair, which undergo series of radioactive decay to form stable nuclei $\boldsymbol{X}_{\!\scriptscriptstyle 3}$ and $\boldsymbol{Y}_{\!\scriptscriptstyle 4}$ (chain enders). The $\boldsymbol{X}_{\!\scriptscriptstyle 3}$ and $\boldsymbol{X}_{\!\scriptscriptstyle 4}$, respectively are

- (a) $^{87}_{35}$ Br and $^{124}_{43}$ Tc (b) $^{99}_{44}$ Ru and $^{133}_{55}$ Cs (c) $^{93}_{38}$ Sr and $^{127}_{35}$ Ag (d) $^{96}_{41}$ Nb and $^{130}_{51}$ Sb

- 52. Consider that A gX crystallizes in rock salt structure. The density of AgX is 6477 kg/m³ and unit cell length is 577.5 pm. Atomic weight of Ag is 107.87 g mol⁻¹. The atomic weight of X (in g mol⁻¹, rounded off to two decimal places) is _____
- 53. In the following reaction sequence,

$$\frac{\text{NaOMe}}{\text{Mo(CO)}_3} \xrightarrow{\text{NaOMe}} (A) \xrightarrow{50^{\circ}\text{C}} (B)$$

The structure of B is (Given: atomic number of Mo is 42)

54. The hydrogen-like radial wave function of the 3s orbital is given as

$$R_{3.0} = \frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - 2\rho + \frac{\rho^2}{9}\right) e^{-\rho/6}$$

where, $\rho = \frac{2Zr}{a_0}$; Z = atomic number; r = distance from the nucleus and $a_0 =$ Bohr radius

Positions of the radial nodes (in units of a_0) of the 3s orbital are at

(a)
$$\frac{3+\sqrt{3}}{2Z}$$
, $\frac{3-\sqrt{3}}{2Z}$ (b) $\frac{6+3\sqrt{3}}{2Z}$, $\frac{6-3\sqrt{3}}{2Z}$ (c) $\frac{3+3\sqrt{3}}{2Z}$, $\frac{3-3\sqrt{3}}{2Z}$ (d) $\frac{9+3\sqrt{3}}{2Z}$, $\frac{9-3\sqrt{3}}{2Z}$

In a reaction, reactant X is converted to products Y and Z consecutively with rate constants 6.0×10^{-2} min⁻¹ and 9.0×10^{-3} min⁻¹, respectively. If the initial amount of X is 12.5 moles, the number of moles (rounded off to one decimal place) of Y formed after 10 minutes is ______

***** END OF THE QUESTION PAPER *****

