CHEMISTRY-CY

Q.1 – Q.25 : Carry ONE mark each.

- 1. A 5V battery delivers a steady current of 1.5 A for a period of 2 h. The total charge that has passed through the circuit is ______ Coulombs.
- 2. A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K. The efficiency of the heat engine is _____%.
- 3. The characters of *E*, C_2 , σ_v , and σ'_v symmetry operations, in this order, for valid irreducible representation(s)

of the C_{2v} point group is/are:

(a) 1, -1, -1, -1 (b) 1, -1, 1, -1 (c) 1, 1, 1, 1 (d) -1, 1, 1, -1

4. The number of photons emitted per nanosecond by a deuterium lamp (400 nm) having a power of 1 microwatt (rounded off to the nearest integer) is ______

 $[h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}; c = 3.0 \times 10^8 \text{ ms}^{-1}]$

5. The geometry and the number of unpaired electrons in tetrakis(1-norbornyl)Co

(a) square planar and one(c) square planar and three

- (b) tetrahedral and five
- (d) tetrahedral and one
- 6. The rate of the substitution reaction of $[Co(CN)_5Cl]^{3-}$ with OH⁻ to give $[Co(CN)_5(OH)]^{3-}$
 - (a) is directly proportional to the concentration of OH⁻ only
 - (b) depends on the concentrations of both $[Co(CN)_5Cl]^{3-}$ and OH^{-}
 - (c) depends on the concentration of $[Co(CN)_5Cl]^{3-}$ only
 - (d) is inversely proportional to the concentration of OH-
- 7. The correct statement(s) about the concentration of Na^+ and K^+ ions in animal cells is/are:
 - (a) $[Na^+]$ inside the cell > $[Na^+]$ outside the cell
 - (b) $[Na^+]$ inside the cell $< [Na^+]$ outside the cell $\in NDEAV$
 - (c) $[K^+]$ inside the cell > $[K^+]$ outside the cell
 - (d) $[K^+]$ inside the cell < $[K^+]$ outside the cell
- 8. The rate constants for the decomposition of a molecule in the presence of oxygen are 0.237×10^{-4} L mol⁻¹ s⁻¹ at 0°C and 2.64×10^{-4} L mol⁻¹ s⁻¹ at 25°C (R = 8.314 J mol⁻¹ K⁻¹).
 - The activation energy for this reaction (rounded off to one decimal place) is _____ kJ mol⁻¹.
- 9. The major product formed in the following reaction

- (a) non-6-yn-2-one
- (c) non-3-yn-8-one

(b) non-2-yn-6-one(d) non-3-en-8-one

10. The Δ_0 of $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$ and $[Cr(CN)_6]^{3-}$ follows the order:

(a)
$$[CrF_6]^{3-} > [Cr(H_2O_6)]^{3+} > [Cr(CN_6)]^{3-}$$

(c)
$$[Cr(\tilde{H}_{2}O)_{6}]^{3+} > [\tilde{C}r\tilde{F}_{6}]^{3-} > [Cr(CN)_{6}]^{3-}$$

(b)
$$[Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$$

(d) $[CrF_6]^{3-} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+}$

- 11. The vapor pressure of toluene (Mol. Wt. = 92) is 0.13 atm at 25°C. If 6g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is _____
- 12. The metal borides that contain isolated boron atoms are:
 - (a) TiB and HfB
 - (c) Ti_4B_4 and V_3B_4

(b)
$$\operatorname{Tc}_{7}B_{3}$$
 and $\operatorname{Re}_{7}B_{3}$
(d) $\operatorname{Cr}_{5}B_{3}$ and $\operatorname{V}_{3}B_{2}$

13. The major product formed in the following reaction

- 14. Reaction of $LiAlH_4$ with one equivalent of Me₃N.HCl gives a tetrahedral compound, which reacts with another equivalent of Me₃N.HCl to give compound N. The compound N and its geometry, respectively, are:
 - (a) $AlH_3(NMe_3)_2$ and petagonal
 - (c) Li_2AlH_4Cl and square pyramidal

(b) AlH₃(NMe₃)₂ and trigonal bipyramidal (d) LiAlH₄NMe₃ and trigonal bipyramidal

15. The major products P and Q formed in the following reactions

respectively, are:

- 16. The yellow color of an aqueous solution of K_2CrO_4 changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:
 - (a) dichromate ion, +6 and +6, charge transfer
- (b) chromium chloride, +3, d-d transition(d) chromic acid, +6, charge transfer
- 17. The normal mode(s) of vibration of H_2O is/are:

(c) perchlorate ion, +7, charge transfer

- 18. Given the initial weight of 1 mg of radioactive ${}^{60}_{27}$ Co (half-life = 5.27 years), the amount disintegrated in 1 year (rounded off to two decimal places) is _____mg.
- 19. 2 L of a gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5 L. The absolute value of the work done on the gas (rounded off to the nearest integer) is _____ Joules.
- 20. The quantity of the cobalt ore $[Co_3(AsO_4)_2.H_2O]$ required to obtain 1 kg of cobalt (rounded off to two decimal places) is _____kg. [Atomic Wt. of Co = 59, As = 75, O = 16, H = 1]

21. In the following reaction sequence

the major products P and Q, respectively, are:

GATE-CY 2021

QUESTION PAPER

- 22. The shapes of the compounds ClF_3 , XeOF₂, N₃⁻ and XeO₃F₂ respectively, are:
 - (a) trigonal planar, T-shape, V-shape and square pyramidal
 - (b) T-shape, T-shape, linear and trigonal bipyramidal
 - (c) T-shape, trigonal planar, linear and square pyramidal
 - (d) trigonal planar, trigonal planar, V-shape and trigonal bipyramidal
- 23. The reaction of NiBr₂ with two equivalents of PPh₃ in CS₂ at -78°C gives a red-colored diamagnetic complex, [NiBr₂(PPh₃)₂]. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25°C. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
 - (a) tetrahedral and 2
 - (c) square planar and 4

- (b) square planar and 2
- (d) tetrahedral and 1
- 24. The phase diagram of CO_2 is shown below:

Liquid Pressure Solid Gas Temperature

The correct statement(s) about CO_2 is/are:

- (a) Above T_c , it does not exist in liquid state.
- (c) At T_c, it can exist in all three phases.

(b) Below T_c , it does not exist in liquid state. (d) Above T₁, it does not exist in solid state.

Me CH₂I₂, Zn/Cu Et₂O 25. The major product formed in the following reaction Me SiMe₂Ph Me Me (a) (b)SiMe₂Ph Me SiMe₂Ph Me Me Me Me (d) (c)

Q.26 - Q.55 : Carry TWO marks each.

A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of CL having its 26. fundamental vibration at 560 cm⁻¹. The Stokes line corresponding to this vibration will be observed at _____ cm⁻¹. (Rounded off to the nearest integer).

GATE-CY 2021

QUESTION PAPER

- 27. The major product formed in the reaction of (2R, 3R)-2-bromo-3-methylpentane with NaOMe is:
 - (a) (E)-3-methylpent-2-ene

- (b) (Z)-3-methylpent-2-ene
- (c) (2R, 3R)-2-methoxy-3-methylpentane
- (d) (2S, 3R)-2-methoxy-3-methylpentane
- 28. The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $[Ti(H_2O)_6]^{3+}$, $[Mn(H_2O)_6]^{2+}$, $[CrO_4]^{2-}$, and $[NiCl_4]^{2-}$ is:
 - (a) $[\text{Ti}(\text{H}_{2}\text{O})_{6}]^{3+} < [\text{NiCl}_{4}]^{2-} < [\text{CrO}_{4}]^{2-} < [\text{Mn}(\text{H}_{2}\text{O})_{6}]^{2+}$
 - (b) $[\text{Ti}(\text{H}_2\text{O})_6]^{3+} < [\text{Mn}(\text{H}_2\text{O})_6]^{2+} < [\text{CrO}_4]^{2-} < [\text{NiCl}_4]^{2-}$
 - (c) $[NiCl_{4}]^{2-} < [Ti(H_{2}O)_{6}]^{3+} < [Mn(H_{2}O)_{6}]^{2+} < [CrO_{4}]^{2-}$
 - (d) $[Mn(H_2O)_5]^{2+} < [Ti(H_2O)_5]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-}$
- 29. Among the following

30.

31.

32.

Me₃SiO

CN

33. The number of signal(s) in the ¹H NMR spectrum of the following compound

recorded at 25°C in CDCl₃ is _____

- 34. The spin-only magnetic moment of $[Co(H_2O)_c]^{2+}$ (rounded off to one decimal place) is _____BM.
- 35. A correct example of a nucleotide is:
 - (a) RNA
 - (c) adenosine monophosphate (AMP)
- 36. The correct statement(s) about actinides is/are:
 - (a) The 5f electrons of actinides are bound less tightly than the 4f electrons.
 - (b) All the actinides are radioactive.
 - (c) The trans uranium elements are prepared artificially.
 - (d) Actinides do not exhibit actinide contraction.
- 37. An organic compound exhibits the $[M]^+$, $[M+2]^+$ and $[M+4]^+$ peaks in the intensity ratio 1 : 2 : 1 in the mass spectrum, and shows a singlet at δ 7.49 in the ¹H NMR spectrum in CDCl₃. The compound is:
 - (a) 1, 4-dibromobenzene(c) 1, 4-dichlorobenzene
- (d) 1, 2-dibromobenzene

(b) uridine

(d) DNA

38. The major product formed in the following reaction

39. The equilibrium constant for the reaction

$$3NO(g) \implies N_2O(g) + NO_2(g) \text{ at } 25^{\circ}C \text{ is closest to:}$$

$$[\Delta G^0 = -104.18 \text{ kJ}; R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}]$$
(a) 1.043 (b) 1.651 (c) 5.7 × 10^{-19} (d) 1.8 × 10^{18}

- 40. The molar absorption coefficient of a substance dissolved in cyclohexane is $1710 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$ at 500 nm. The reduction in intensity of light of the same wavelength that passes through a cell of 1 mm path length containing a 2 mmol L⁻¹ solution (rounded off to one decimal place) is _____%.
- 41. In the following reaction

(a) hemocyanin

42.

(c) myoglobin

(b) cytochrome P-450 (d) hemoglobin

44.

43. The major product formed in the following reaction

- (a) 0.312 and 0.688 (b) 0.688 and 0.312 (c) 0.600 and 0.400 (d) 0.400 and 0.600
- 45. The change in enthalpy (Δ H) for the reaction $2P(s) + 3Br_2(l) \rightarrow 2 PBr_3(l)$ is -243 kJ. In this reaction, if the amount of phosphorus consumed is 3.1 g, the change in enthalpy

(rounded off to two decimal places) is _____kJ. [Atomic Wt. of P = 31]

46. In an electrochemical cell, Ag^+ ions in $AgNO_3$ are reduced to Ag metal at the cathode and Cu is oxidized to Cu^{2+} at the anode. A current of 0.7 A is passed through the cell for 10 min. The mass (in grams) of silver deposited and copper dissolved, respectively, are:

[Faraday Constant = 96,485 C mol⁻¹, Atomic Weight of Ag = 107.9, Atomic Weight of Cu = 63.55]

- (a) 0.235 and 0.069 (b) 0.235 and 0.138 (c) 0.460 (c) 0.025 (c) 0.0120 (c) 0.
- (c) 0.469 and 0.069 (d) 0.469 and 0.138
- 47. The fundamental vibrational frequency of ${}^{1}\text{H}{}^{127}\text{I}$ is 2309 cm⁻¹. The force constant for this molecule (rounded off to the nearest integer) is _____ Nm⁻¹. [$N = 6.022 \times 10^{23}$, $c = 3.0 \times 10^{8} \text{ ms}{}^{-1}$]

48. Among the following eight compounds,

the number of compound(s) which can exhibit stereoisomerism is

49. The major product formed in the following reaction

- 50. Acceptable wavefunctions for a quantum particle must be:(a) continuous(b) single-valued(c) even(d) odd
- 51. The correct order of Lewis acid strengths of BF_2Cl , BFClBr, BF_2Br and $BFBr_2$ is:
 - (a) $BF_2Cl > BF_2Br > BFClBr > BFBr_2$ (b) $BF_2Cl > BFClBr > BF_2Br > BFBr_2$ (c) $BFClBr > BFBr_2 > BF_2Cl > BF_2Br$ (d) $BFBr_2 > BFClBr > BF_2Br > BF_2Cl$
- 52. The reaction $CO(g) + Cl_2(g) \implies COCl_2(g)$ at 500°C, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl_2 , is allowed to reach equilibrium. The partial pressure of $COCl_2(g)$ at equilibrium is 0.15 bar. The equilibrium constant for this reaction at 500°C (rounded off to two decimal places) is _____
- 53. The reagent(s) required for the conversion of hex-3-yne to (*E*)-hex-3-ene is/are: (a) LiAlH₄ (b) Li/liquid NH₃ (c) Bu_3SnH (d) H₂, Pd/BaSO₄

54. The rates of alkaline hydrolysis of the compounds shown below

55. The Mo–Mo bond order in $[(\eta^5 - C_5H_5)Mo(CO)_2]_2$ which obeys the 18-electron rule is _____

***** END OF THE QUESTION PAPER *****

