CHEMISTRY

Q.01 - Q.25: Carry ONE mark each.

1. The major product in the following reaction sequence is

- The correct statement(s) about ${}^4D_{5/2}$ state of an atom is (are) (a) It can show spectral transition to ${}^4P_{3/2}$ state. (b) It splits into five levels in the presence of magnetic field 2.

 - (c) It can originate from s¹p² electronic configuration
 - (d) It corresponds to L = 2, S = 1/2 and J = 5/2
- 3. The reaction(s) that yield(s) X as the major product is (are)

(a) Ph NaOMe

(b) Ph CO₂Me

(c) Ph NaOMe

NaOMe

NaOMe

$$CO_2Me$$
 CO_2Me
 CO_2Me

The reaction(s) that yield(s) 2-methylquinoline as the major product is (are) 4.

- 5. The order and the number of classes present in a group with the irreducible representation A₁, A₂, B₁, B₂, E_1 and E_2 , are, respectively.
 - (a) 12 and 6
- (b) 6 and 6
- (c) 12 and 3
- (d) 6 and 3

- ¹H NMR spectrum of a mixture containing CH₂Br (x mol) and (CH₂)₂CBr (y mol) shows two singlets at 6. 2.7 ppm and 1.8 ppm, with the relative ratio of 3:1 (integration value), respectively. The value of x/y is (rounded off to the nearest integer)
- The partial vapor pressure of 0.1 molal solution of B in liquid A is 60 kPa at 300K. The partial vapor 7. pressure (in kPa) of a solution containing B with mole fraction of 0.1 in liquid A at 300 K is _____ (Assume the solute B obey's Henry's law. The molar mass of A is 80 g mol⁻¹) (Rounded off to three decimal places)
- Critical micellar concentration of a surfactant is 0.008 M in water at 25 °C. If the aggregation number of 8. the micelles is 80, the concentration of the micelles (in M) present in 0.088 M aqueous solution of the surfactant at 25 °C is
 - (a) 0.010
- (b) 0.001
- (c) 0.088
- (d) 0.008
- The ground state of $\left[Cr \left(H_2 O \right)_6 \right]^{2+}$ is (a) 6A_2 (b) $^5T_{2g}$ (c) $^6A_{1g}$ (d) 5E_g 9.

- The crystal field stabilization energy of $\left[\text{Cr} \left(\text{NH}_3 \right)_6 \right]^{3+}$ with Δ_0 value 21600 cm⁻¹ is y cm⁻¹. The value of 10.

(rounded off to the nearest integer)

The value of $\frac{e^2}{2\pi\epsilon_0 a_0}$ in atomic unit of energy is ______ 11.

(e: charge of electron; a_0 : Bohr radius; ϵ_0 : permittivity of vacuum) (rounded off to the nearest integer)

- The molecule XY2 is microwave active and its vibration-rotation spectrum shows only P and R transi-12. tions. In the correct structure.
 - (a) X is the central atom in bent XY₂
- (b) X is the central atom in linear XY,
- (c) Y is the central atom in bent XY,
- (d) Y is the central atom in linear XY,
- The complex (es) with distorted octahedral structure is (are) 13.
 - (a) $\left[\text{Fe} \left(\text{CN} \right)_{6} \right]^{4-}$ (b) $\left[\text{VF}_{6} \right]^{3-}$ (c) $\left[\text{FeF}_{6} \right]^{3-}$ (d) $\left[\text{MnF}_{6} \right]^{3-}$

- The correct statement(s) related to an ensemble is (are): 14.
 - (a) an ensemble is a collection of an infinite number of imaginary replications of the system of interest.
 - (b) all members of an ensemble are macroscopically identical and also have identical microstates.
 - (c) all systems in a canonical ensemble need NOT have the same composition.
 - (d) an ensemble average of any macroscopic property of the system is equal to the value of the property averaged over a sufficiently long time.
- The compound(s) which show(s) the perovskite structure in solid state is (are) 15.
 - (a) CaTiO₂
- (b) CsPbI₂
- (c) NiFe₂O₄
- Consider the following two parallel irreversible first-order reactions, where k₁=2k₂ at 300 K. After com-16. plete conversion of R at 300 K, the concentration of P1 in the reaction mixture was 15 mol L⁻¹. The initial concentration of R (in mol L⁻¹) was

 $(k_1 \text{ and } k_2 \text{ are the rate constants})$

(rounded off to one decimal place)

- 18. The non-dissociative adsorption of a gas on a given surface at a fixed temperature follows Langmuir isotherm. The plot(s) which give(s) a straight line is (are)
 [Given: V = volume of the adsorbed gas, P = pressure of the gas]
 (a) V versus 1/P
 (b) P/V versus P
 (c) V versus P
 (d) 1/V versus 1/P
- 19. The major product in the given reaction sequence is Q. The mass spectrum of Q shows ([M] = molecular ion peak)

OH
$$\frac{\text{(i) NaOH, CO}_2, \text{ then H}_3\text{O}^+}{\text{(ii) Br}_2\text{-water (excess)}}\text{(Q)}$$

- (a) [M], [M+2], [M+4]. and [M+6] peaks with relative intensity of 1:3:3:1
- (b) [M], [M+2], and [M+4] peaks with relative intensity of 1:2:1
- (c) [M], [M+2]. [M+4], and [M+6] peaks with relative intensity of 1:1:1:1
- (d) [M] and [M+2] peaks with relative intensity of 1:1
- 20. The correct statement(s) for decalin is (are)
 - (a) cis-Decalin is thermodynamically less stable than trans-decalin.
 - (b) cis-Decalin contains plane of symmetry.
 - (c) trans-Decalin undergoes ring inversion.
 - (d) trans-Decalin belongs to the point group of C_{2h}
- 21. Among the following, the compound with the lowest CO stretching frequency is
 - (a) $[Mn(CO)_6]^+$

(b) [Cr(dien)(CO)₂] (dien: diethylenetriamine)

(c) $[V(CO)_6]^{-1}$

- (d) $[Cr(CO)_5]$
- 22. The reaction of XeF, with HN (SO₂F), at 273 K in CF₂C1, solvent yields
 - (a) FXeN $(SO_2F)_2 + HF$

(b) $SOF_2 + XeO_2 + NH_3$

(c) $XeF_4 + SO_2 + NH_3$

- (d) $Xe + SO_2 + N_2 + HF$
- 23. The product M in the following reaction is

24. Among the following, the chiral compound is

- 25. Among the following metalloproteins, the pair(s) of non-heme proteins is (are)
 - (a) Cytochrome P-450 and Hemocyanin
- (b) Hemerythrin and Carbonic anhydrase
- (c) Hemoglobin and Myoglobin
- (d) Hemocyanin and Carboxypeptidase

Q.26 - Q.55: Carry TWO marks each.

- 26. Among the following, the correct statement(s) is (are):
 - (a) the energy separation between any two adjacent states is same for a harmonic oscillator, while it is different for a rigid rotor.
 - (b) the normalization factor of a Slater determinant for a 3-electron atom is $\sqrt{1/3}$
 - (c) the magnitude of the total spin angular momentum of an a electron is the negative of that of a B electron.
 - (d) the number of nodes in the radial wave function of 3s orbital of a hydrogen atom. is the same as the number of nodes in the angular wave function of a 4d orbital of hydrogen atom.
- 27. Consider the following reaction sequence. The correct option(s) is (are)

28. In the given reaction sequence, the amount of R produced (in g) is

Benzene
$$\xrightarrow{\text{oleum(excess), 200°C}} \text{(P)} \xrightarrow{\text{NaOH, heat then H}_3\text{O}^+} \text{(Q)} \xrightarrow{\text{HNO}_3(\text{excess})/\text{H}_2\text{SO}_4 \text{(excess)}} \text{(R)}$$

(Given: molar mass (in g mol⁻¹) of H = 1, C = 12, N = 14, O = 16 and S = 32) (rounded off to two decimal places)

29. The wave function of a particle in a cubic box (of side L) is given by

$$\psi(x, y, z) = \sqrt{32/L^3} \sin \frac{\pi x}{L} \cos \frac{\pi x}{L} \sin \frac{2\pi y}{L} \sin \frac{\pi z}{L}$$

The ratio of the energy of the state corresponding to the above wave function to the ground state energy is ______(rounded off to the nearest integer)

- 30. If q_t and $Q_{t,m}$ are the molecular and molar translational partition functions x_2 respectively, then $\ln(Q_{t,m}) = (N \text{ is the Avogadro number})$
 - (a) $N \ln q_t N \ln N + N$

(b) $N \ln q_t - \ln N$

(c) $N \ln q_t - N \ln N$

(d) $N \ln q_t + N \ln N + N$

31. Consider the following six vibrational modes:

> symmetric stretching of CO₂, O-H symmetric stretching of H₂O, stretching of HC1. stretching of H₃. N-H symmetric stretching of NH₃. and bending of CO₂.

> Among these modes, if k number of modes are IR active but Raman inactive, l number of modes are IR inactive but Raman active, and m number of modes are both IR and Raman active.

k, I, and m, respectively, are

- (a) 2, 1, and 3
- (b) 1, 3, and 2
- (c) 1. 2. and 3
- (d) 3, 1, and 2

 ΔS^0 (in $I \ mol^{-1}K^{-1}$) for the given reaction at 298 K is _____ 32.

$$\left[Cu(H_2O)_6 \right]^{2+} + en \Longrightarrow \left[Cu(H_2O)_4(en) \right]^{2+} + 2H_2O$$

[Given: log $K_1 = 10.6$, where K_1 is the equilibrium constant, $\Delta H^0 = -54 \text{ kJ mol}^{-1}$ and R = 8.314 J $mol^{-1} K^{-1}$

(rounded off to two decimal places)

- 33. Among the following, the NMR active nucleus(nuclei) is (are)
 - (a) ¹⁶O
- (b) ¹²C
- $(c)^{2}H$
- $(d)^{19}F$
- Fischer presentation of D-(-)-fructose is given below 34.

The correct structure of α -L-(+)-fructofuranose is

- 35. The complex(es) that exhibit(s) optical isomerism is (are)
 - (a) trans-[Co(en)₂Cl₂]⁺

(c) [Fe(acac)₃]

- (b) [Co(en)₃]³⁺ (d) cis-[Co(en)₂Cl₂]⁺
- 36. 2 mol of a monoatomic ideal gas with initial volume of 5 L and pressure 10 bar undergoes an irreversible adiabatic expansion against a constant final pressure of 1 bar The final volume (in L) is

(Given: $R = 8.314 \times 10^{-2} L bar mol^{-1} K^{-1}$)

(rounded off to one decimal place)

- 37. The turnover frequency (in h⁻¹) of a reaction where 5 mol% of a catalyst is required for 90% conversion in 3 h is (rounded off to the nearest integer)
- 38. Among the following, the correct statement(s) is (are):
 - (a) σ_v symmetry element is present in NH₃ but NOT in BF₃
 - (b) one σ_h and three σ_d symmetry elements are present in benzene.
 - (c) C₂ symmetry element is present in H₂O and H₂O₂ but NOT in PC1₅.
 - (d) both C₂ and C₃ symmetry elements are present in CCl₄ and SF₆.
- Borax on treatment with NaOH and H2O2 forms X. The compound X on reaction. with PhCN at 60 °C 39. in methanol-water mixture gives Y as the major product X and Y respectively, are
 - (a) $Na_2B_2(O_2)_2(OH)_4 \cdot nH_2O$ and PhCOOH
 - (b) $NaB(O)(OH)_2 \cdot nH_2O$ and PhCOOH
 - (c) $Na_2B_2(O_2)_2(OH)_4 \cdot nH_2O$ and PhCONH₂
 - (d) $NaB(O)(OH)_2 \cdot nH_2O$ and $PhCONH_2$
- 40. ψ_1, ψ_2, ψ_3 and ψ_4 are four Huckel molecular orbitals of benzene with orbital energies E_1, E_2, E_3 and E_4 , respectively.

$$\psi_{3} = 6^{-\frac{1}{2}} \left(\phi_{A} + \phi_{B} + \phi_{C} + \phi_{D} + \phi_{E} + \phi_{F} \right); \quad \psi_{4} = 12^{-\frac{1}{2}} \left(2\phi_{A} + \phi_{B} - \phi_{C} - 2\phi_{D} - \phi_{E} + \phi_{F} \right)$$

The correct order of the orbital energies is

(The six carbon atoms of benzene are denoted by A to F and ϕ_i is the $2p_z$ orbital of J^{th} carbon of benzene)

(a)
$$E_3 < E_2 < E_1 = E_4$$

(b)
$$E_4 < E_1 = E_3 < E_2$$

(d) $E_1 < E_2 = E_3 < E_4$

(c)
$$E_3 < E_1 = E_4 < E_2$$

(d)
$$E_1 < E_2 = E_3 < E_4$$

41. The correct statement for a thermally initiated radical polymerization in a solution is:

(Assume: Steady-state and equal reactivity of the propagating radicals, termination reactions are only by combination, and no chain transfer reaction.

Given: Rp rate of polymerization, DP degree of polymerization, [1] initiator concentration, and [M] monomer concentration.)

- (a) with increase in [I]. both Rp and DP increase.
- (b) Rp decreases with increase in [I] but DP increases with increase in [M].
- (c) with increase in [M]. both Rp and DP increase.
- (d) DP increases with increase in [I] and DP decreases with increase in [M].
- 42. Consider the following reaction sequence where *M* and *N* are the major products. The correct option(s) is (are)

(a)
$$\mathbf{M} = \begin{bmatrix} HIIII \\ H \end{bmatrix}$$

$$EtO_2C^{N}$$

$$CO_2Et$$

$$\mathbf{N} = \begin{bmatrix} \mathbf{N} & \mathbf{N} & \mathbf{N} \\ \mathbf{E} & \mathbf{I} & \mathbf{I} \\ \mathbf{C} & \mathbf{O}_2 \mathbf{E} \mathbf{I} \end{bmatrix}$$

(c)
$$N = EtO_2C^{N}$$
 CO₂Et

43. The correct statement(s) regarding P. Q. R. and S is (are):

- (a) R gets oxidized faster than S when reacted with CrO₃ in DCM as a solvent.
- (b) Q reacts faster than P with NaN₃ in DMF as a solvent.
- (c) P reacts faster than Q with PhSNa in DMF as a solvent.
- (d) R reacts faster than S when treated with TsCl/Et₂N in DCM as a solvent

44. The correct option(s) that give(s) P as the major product is (are)

- (i) L-Selectride, THF
- (ii) MsCl, Et₃N; then NaCN
- (iii) DIBAL-H (1 equiv.), THF, -78°C
- (iv) Ph₃P=CH-CO₂Me

- (i) TsNHNH₂, MeLi (2 equiv.) THF, -78°C
- (ii) DMF, 0°C
- (iii) NaH, (OMe)₂P(O)CH₂CO₂Me, THF, 0°C to reflux

- (i) LDA, THF, -78° C, Tf₂O
- (ii) Methyl acrylate, Pd(Ph₃P)₂Cl₂ (2 mol%), Et₃N (3 equiv.), DMF

- (i) Me₃SiCH(Li)Cl, THF, -78°C
- (ii) HClO₄, THF
- (iii) Zn, BrCH2CO2Me
- (iv) p-TSA, reflux

45. The correct statement(s) about the relationship for the H-atoms in the following compounds is (are):

$$H_4$$
 H_4
 H_5
 H_6
 H_7
 H_7
 H_7

- (a) H₁ and H₃ are enantiotopic; H₂ and H₃ are diastereotopic.
- (b) H_5 and H_7 are enantiotopic; H_6 and H_7 are homotopic.
- (c) H_1 and H_3 are diastereotopic; H_2 and H_3 are enantiotopic.
- (d) H_2 and H_3 are homotopic; H_6 and H_7 are enantiotopic.
- 46. The following figure shows an experimental liquid-liquid phase diagram of phenol and water at the vapor pressure of the system. The total amount of phenol and water (in mol) present in the phenol-rich phase when 5 mol of water was shaken with 5 mol of phenol at 40 °C ______

(round off to one decimal places)

47. The major products X and Y in the following reaction sequence are

(a)
$$\mathbf{X} = \begin{pmatrix} \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \end{pmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{H}_{3}\mathbf{C} & \mathbf{N} \\ \mathbf{N} & \mathbf{N} \end{bmatrix}$$

(b)
$$\mathbf{X} = \bigcup_{OCH_3}^{O} \bigcup_{OCH_3}^{N}$$

$$Y = \begin{pmatrix} H_3C & \\ & \\ & \end{pmatrix}$$

(c)
$$\mathbf{X} = \begin{pmatrix} \mathbf{H}_{3}\mathbf{C} & \mathbf{H}_{3}\mathbf{C} \\ \mathbf{H}_{3}\mathbf{C} & \mathbf{V} = \begin{pmatrix} \mathbf{H}_{3}\mathbf{C} & \mathbf{H}_{3}\mathbf{C} \\ \mathbf{H}_{3}\mathbf{C} & \mathbf{V} \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} \mathbf{H}_{3}\mathbf{C} & \mathbf{H}_{3}\mathbf{C} \\ \mathbf{H}_{3}\mathbf{C} & \mathbf{V} \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} \mathbf{H}_{3}\mathbf{C} & \mathbf{H}_{3}\mathbf{C} \\ \mathbf{H}_{3}\mathbf{C} & \mathbf{V} \end{pmatrix}$$

48. In the following reactions, the structures of I, II and III, respectively, are

$$(d) \xrightarrow{Ph_3P/I_{I_1}} \xrightarrow{Rh} \xrightarrow{PPh_3} OC (II) \xrightarrow{PPh_3} CI_{I_{I_1}} \xrightarrow{PPh_3} Ph_3 CI \xrightarrow{PPh_3} Ph$$

The heptacity of allyl and Cp and the ligation mode of NO in the thermodynamically stable complexes 49. $[(\eta^x - allyl)Ru(CO)_2(NO)]$ and $[(\eta^y - Cp)Ru(CO)_2(NO)]$, respectively, are

(The heptacity of allyl and Cp are denoted by η^x and η^y , respectively.)

- In thermogravimetric analysis, 12.45 mg of CuSO₄.5H₂O was subjected to heating under N₂ atmo-50. sphere. At a particular temperature, there was a weight loss of 3.6 mg. The number of water molecule(s) lost per formula unit is

(Given: molar mass (in g mol^{-1} of H=1.0, O=16.0, S=32.0 and Cu=63.5) (rounded off to the nearest integer)

- In aqueous solution of $K_4[Fe(CN)_6]$, the allowed transition(s) is (are) 51.
 - (a) ${}^{5}T_{2g}$ to ${}^{5}E_{g}$
- (b) ${}^{1}A_{1g}$ to ${}^{0}T_{1g}$ (c) ${}^{1}A_{1g}$ to ${}^{1}T_{2g}$ (d) ${}^{5}T_{2g}$ to ${}^{3}E_{g}$
- Consider the following 'H-NMR (400 MHz. DMSO-d_δ) data of a compound: δ in ppm: 3.85 (s. 6H), 52. 6.73 (t. J=2.2 Hz. 1H). 7.1 (d. J=2.2 Hz. 2H), and 13.05 (brs. IH). The compound is

$$(a) \qquad \begin{array}{c} CO_2H \\ OMe \end{array} \qquad \begin{array}{c} CO_2H \\ OMe \end{array} \qquad \begin{array}{c} OMe \\ OMe \end{array} \qquad \begin{array}$$

 φ_1 and φ_2 are normalized eigenfunctions of a Hermitian operator. 53.

$$|\psi\rangle = 3i|\phi_1\rangle + 2|\phi_2\rangle$$
 and $|\chi\rangle = -2i|\phi_1\rangle + 5|\phi_2\rangle$

The value of $\langle \psi \mid \chi \rangle + \langle \chi \mid \psi \rangle$ is _____

(Rounded off to the nearest integer)

54. The major products E and F in the following reaction sequence are

$$\begin{array}{c} \bullet \\ \text{Br Ph}_{3}\text{P} \\ \hline & \text{NaH (2 equiv.), THF} \end{array} \text{(E)} \\ \begin{array}{c} \text{(i) } \textit{m-CPBA, CH}_{2}\text{Cl}_{2} \\ \hline \text{(ii) BF}_{3}\text{.OEt}_{2} \\ \end{array} \text{(F)}$$

$$\mathbf{F} = \mathbf{F}$$

(b)
$$\mathbf{E} = 0$$
 $\mathbf{F} = 0$

(c)
$$\mathbf{E} = \begin{pmatrix} \mathbf{E} & \mathbf{E} & \mathbf{E} \\ \mathbf{E} & \mathbf{E} \end{pmatrix}$$

$$(d) \mathbf{E} = \mathbf{F} = \mathbf{F}$$

- 55. In the EPR spectrum of an aqueous solution of VOSO₄ at room temperature, the total number of hyperfine splitting signals is
 - (a) 5
- (b) 7
- (c) 8
- (c) 3

CAREER ENDEAVOUR