PHYSICS-PH

Q.1 – Q.25 : Carry ONE mark each.

1. As shown in the figure, an ideal gas is confined to chamber A of an insulated container, with vacuum in chamber B. When the plug in the wall separating the chambers A and B is removed, the gas fills both the chambers. Which one of the following statements is true ?

- (a) Temperature of the gas decrease as it expands to fill the space in chamber B.
- (b) Internal energy of the gas increases as its atoms have more space to move around.
- (c) Internal energy of the gas decreases.
- (d) The temperature of the gas remains unchanged.
- 2. Consider a diatomic molecule formed by identical atoms. If E_V and E_e represent the energy of the vibrational nuclear motion and electronic motion respectively, then in terms of the electronic mass *m* and nuclear mass *M*, E_V/E_e is proportional to
 - (a) $(m/M)^2$ (b) $(m/M)^{1/2}$ (c) m/M (d) $(m/M)^{3/2}$

3. Which one of the following is a solution of $\frac{d^2u(x)}{dx^2} = k^2u(x)$, for k real? (a) e^{-kx} (b) sin kx (c) sinh x (d) cos kx

4. For a complex variable z and the contour c: |z| = 1 taken in the counter clockwise direction,

$$\frac{1}{2\pi i} \oint_c \left(z - \frac{2}{z} + \frac{3}{z^2} \right) dz \text{ is equal to } _$$

5. A particle is moving in a central force field given by $\vec{F} = -\frac{k}{r^3}\hat{r}$, where \hat{r} is the unit vector pointing away from the center of the field. The potential energy of the particle is given by

(a)
$$-\frac{k}{r^2}$$
 (b) $-\frac{k}{2r^2}$ (c) $\frac{k}{2r^2}$ (d) $\frac{k}{r^2}$

6. The total angular momentum *j* of the ground state of the ${}^{17}_{8}$ O nucleus is (a) 3/2 (b) 1/2 (c) 5/2 (d) 1

7. Let *p* be the momentum conjugate be the generalized coordinate *q*. If the transformation $Q = \sqrt{2}q^m \cos p$ and $P = \sqrt{2}q^m \sin p$ is canonical, then *m* is equal to _____.

- 8. A particle Y undergoes strong decay $Y \rightarrow \pi^- + \pi^-$. The isospin of Y is _____.
- 9. Let \hat{a} and \hat{a}^{\dagger} , respectively denote the lowering and raising operators of a one-dimensional simple harmonic oscillator. Let $|n\rangle$ be the energy eigenstate of the simple harmonic oscillator. Given that $|n\rangle$ is also an eigenstate of $\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$, the corresponding eigenvalue is

(a) n(n+1) (b) n^2 (b) n(n-1) (d) $(n+1)^2$

GATE-PH 2020

- 10. Which one of the following is the correct binary equivalent of the hexadecimal F6C ?
 (a) 0110 1100 0111 (b) 1111 0110 1100 (c) 1100 0110 1111 (d) 0110 1111 1100
- 11. Which one of the following relations determines the manner in which the electric field lines are refracted across the interface between two dielectric media having dielectric constants ε_1 and ε_2 (see figure)?

- (a) $\varepsilon_1 \sin \theta_1 = \varepsilon_2 \sin \theta_2$ (b) $\varepsilon_1 \cot \theta_1 = \varepsilon_2 \cot \theta_2$
- (c) $\varepsilon_1 \cos \theta_1 = \varepsilon_2 \cos \theta_2$ (d) $\varepsilon_1 \tan \theta_1 = \varepsilon_2 \tan \theta_2$
- 12. If \vec{E} and \vec{B} are the electric and magnetic fields respectively, then $\vec{E} \cdot \vec{B}$ is
 - (a) odd under parity and even under time reversal.
 - (b) odd under parity and odd under time reversal.
 - (c) even under parity and odd under time reversal.
 - (d) even under parity and even under time reversal.
- 13. Which one of the following is a universal logic gate ? (a) OR (b) NOT (c) AND (d) NAND
- 14. The number of distinct ways the primitive unit cell can be constructed for the two dimensional lattice as shown in the figure is _____.

- 15. A particle X is produced in the process $\pi^+ + p \rightarrow K^+ + X$ via the strong interaction. If the quark content of the K^+ is $u\overline{s}$, the quark content of X is (a) $u\overline{d}$ (b) uud (c) $c\overline{s}$ (d) uus
- 16. A conducting sphere of radius 1 m is placed in air. The maximum number of electrons that can be put on the sphere to avoid electrical breakdown is about 7×10^n , where *n* is an integer. The value of *n* is _____. Assume:

Breakdown electric field strength in air is $|\vec{E}| = 3 \times 10^6 \text{ V/m}$ Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$

Electron charge $e = 1.60 \times 10^{-19} \text{ C}$

- 17. Far from the Earth, the Earth's magnetic field can be approximated as due to a bar magnet of magnetic pole strength 4×10^{14} Am. Assume this magnetic field is generated by a current carrying loop encircling the magnetic equator. The current required to do so is about 4×10^n A, where *n* is an integer. The value of *n* is _____. (Earth's circumference: 4×10^7 m)
- 18. Particle A with angular momentum j=3/2 decays into two particles B and C with angular momenta j_1 and j_2 ,

respectively. If
$$\left|\frac{3}{2}, \frac{3}{2}\right\rangle_A = \alpha \left|1, 1\right\rangle_B \otimes \left|\frac{1}{2}, \frac{1}{2}\right\rangle_C$$
, the value of α is _____.

GATE-PH 2020

21.

QUESTION PAPER

- 19. Choose the correct statement related to the Fermi energy (E_F) and the chemical potential (μ) of a metal. (a) $\mu = E_F$ only at 0 K (b) $\mu > E_F$ at finite temperature
 - (c) $\mu = E_F$ at finite temperature
- (d) $\mu < E_F$ at 0 K
- 20. A small disc is suspended by a fiber such that it is free to rotate about the fiber axis (see figure). For small angular deflections, the Hamiltonian for the disc is given by

$$H = \frac{p_{\theta}^2}{2I} + \frac{1}{2}\alpha\theta^2,$$

where *I* is the moment of inertia and α is the restoring torque per unit deflection. The disc is subjected to angular deflections (θ) due to thermal collisions from the surrounding gas at temperature *T* and p_{θ} is the momentum conjugate to θ . The average and the root-mean-square angular deflection, θ_{avg} and $\theta_{r.m.s}$, respectively are

(a)
$$\theta_{avg} = 0$$
 and $\theta_{r.m.s} = \left(\frac{k_B T}{\alpha}\right)^{1/2}$
(b) $\theta_{avg} \neq 0$ and $\theta_{r.m.s} = \left(\frac{k_B T}{\alpha}\right)^{3/2}$
(c) $\theta_{avg} = 0$ and $\theta_{r.m.s} = \left(\frac{k_B T}{\alpha}\right)^{3/2}$
(d) $\theta_{avg} \neq 0$ and $\theta_{r.m.s} = \left(\frac{k_B T}{\alpha}\right)^{1/2}$
A quantum particle is subjected to the potential
 $\left[\infty, \quad x \leq -\frac{a}{2}\right]$

$$V(x) = \begin{cases} 0, & -\frac{a}{2} < x < \frac{a}{2} \\ \infty, & x \ge \frac{a}{2} \end{cases}$$

The ground state wave function of the particle is proportional to

(a)
$$\cos(\pi x/2a)$$
 (b) $\cos(\pi x/a)$ (c) $\sin(\pi x/a)$ (d) $\sin(\pi x/2a)$

- 22. If a particle is moving along a sinusoidal curve, the number of degrees of freedom of the particle is _____.
- 23. A real, invertible 3×3 matrix *M* has eigenvalues λ_i , (i = 1, 2, 3) and the corresponding eigenvectors are

 $|e_i\rangle$, (i = 1, 2, 3) respectively. Which one of the following is correct?

(a) The eigenvalues of *M* and M^{-1} are not related. (b) $M^{-1} |e_i\rangle = \lambda_i |e_i\rangle$, for i = 1, 2, 3

(c)
$$M^{-1} |e_i\rangle = \frac{1}{\lambda_i} |e_i\rangle$$
, for $i = 1, 2, 3$ (d) $M |e_i\rangle = \frac{1}{\lambda_i} |e_i\rangle$, for $i = 1, 2, 3$

- 24. A medium ($\varepsilon_r > 1$, $\mu_r = 1$, $\sigma > 0$) is semi-transparent to an electromagnetic wave when
 - (a) Conduction current \ll Displacement current.
 - (b) Both conduction current and displacement current are zero.
 - (c) Conduction current \gg Displacement current.
 - (d) Conduction current = Displacement current.
- 25. A hydrogenic atom is subjected to a strong magnetic field. In the absence of spin-orbit coupling, the number of doubly degenerate states created out of the *d*-level is _____.

GATE-PH 2020

QUESTION PAPER

Q.26 - Q.55 : Carry TWO marks each.

26. According to the Fermi gas model of the nucleus, the nucleons move in a spherical volume of radius $R (= R_0 A^{1/3},$ where A is the mass number and R_0 is an empirical constant with the dimensions of length). The Fermi energy of the nucleus E_F is proportional to

(a)
$$\frac{1}{R_0^2}$$
 (b) $\frac{1}{R_0^3}$ (c) $\frac{1}{R_0}$ (d) R_0^2

27. Which one of the following matrices does NOT represent a proper rotation in a plane ?

(a)
$$\begin{pmatrix} -\sin\theta & \cos\theta \\ -\cos\theta & -\sin\theta \end{pmatrix}$$

(b) $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$
(c) $\begin{pmatrix} -\sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix}$
(d) $\begin{pmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{pmatrix}$

28. \hat{S}_x denotes the spin operator defined as $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Which one of the following is correct?

- (a) The eigenstates of spin operator \hat{S}_x are $\left|\uparrow\right\rangle_x \equiv \begin{pmatrix}1\\0\end{pmatrix}$ and $\left|\downarrow\right\rangle_x \equiv \begin{pmatrix}0\\1\end{pmatrix}$.
- (b) The eigenstates of spin operator \hat{S}_x are $\left|\uparrow\right\rangle_x \equiv \frac{1}{\sqrt{2}} \begin{pmatrix}1\\-1\end{pmatrix}$ and $\left|\uparrow\right\rangle_x \equiv \frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\end{pmatrix}$.
- (c) In the spin state $\frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$, upon the measurement of \hat{S}_x , the probability for obtaining $|\uparrow\rangle_x$ is $\frac{1}{4}$.
- (d) In the spin state $\frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$, upon the measurement of \hat{S}_x , the probability for obtaining $|\uparrow\rangle_x$ is $\frac{2+\sqrt{3}}{4}$.
- 29. A charge q moving with uniform speed enters a cylindrical region in free space at t = 0 and exits the region at $t = \tau$ (see figure). Which one of the following options best describes the time dependence of the total electric flux $\phi(t)$, through the entire surface of the cylinder ?

30. Let u^{μ} denote the 4-velocity of a relativistic particle whose square $u^{\mu}u_{\mu} = 1$. If $\varepsilon_{\mu\nu\rho\sigma}$ is the Levi-Civita tensor, then the value of $\varepsilon_{\mu\nu\rho\sigma}u^{\mu}u^{\nu}u^{\rho}u^{\sigma}$ is _____.

31. Consider the Lagrangian $L = a \left(\frac{dx}{dt}\right)^2 + b \left(\frac{dy}{dt}\right)^2 + cxy$, where *a*, *b* and *c* are constants. If p_x and p_y are

the momenta conjugate to the coordinates x and y respectively, then the Hamiltonian is

(a)
$$\frac{p_x^2}{4a} + \frac{p_y^2}{4b} - cxy$$
 (b) $\frac{p_x^2}{a} + \frac{p_y^2}{b} + cxy$ (c) $\frac{p_x^2}{2a} + \frac{p_y^2}{2b} - cxy$ (d) $\frac{p_x^2}{2a} + \frac{p_y^2}{2b} + cxy$

- 32. A free particle of mass M is located in a three-dimensional cubic potential well with impenetrable walls. The degeneracy of the 5th excited state of the particle is _____.
- 33. For a gas of non-interacting particles, the probability that a particle has a speed v in the interval v to v + dv is given by

$$f(v) dv = 4\pi v^2 dv \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-mv^2/2k_B T}$$

If *E* is the energy of a particle, then the maximum in the corresponding energy distribution in units of E/k_BT occurs at _____ (rounded off to one decimal place).

- 34. A plane electromagnetic wave of wavelength λ is incident on a circular loop of conducting wire. The loop radius is $a(a \ll \lambda)$. The angle (in degrees), made by the Poynting vector with the normal to the plane of the loop to generate a maximum induced electrical signal, is _____.
- 35. A uniform magnetic field $\vec{B} = B_0 \hat{y}$ exists in an inertial frame *K*. A perfect conducting sphere moves with a constant velocity $\vec{v} = v_0 \hat{x}$ with respect to this inertial frame. The rest frame of the sphere is *K'* (see figure). The electric and magnetic fields in *K* and *K'* are related as

$$\vec{E}_{\parallel}' = \vec{E}_{\parallel} \qquad \vec{E}_{\perp}' = \gamma \left(\vec{E}_{\perp} + \vec{v} \times \vec{B} \right) \\ \vec{B}_{\parallel}' = \vec{B}_{\parallel} \qquad \vec{B}_{\perp}' = \gamma \left(\vec{B}_{\perp} - \frac{\vec{v}}{c^2} \times \vec{E} \right) \\ + \gamma \left(\frac{\vec{v}}{c} \right)^2$$

The induced surface charge density on the sphere (to the lowest order in v/c) in the frame K' is

(a) uniform over the sphere

(c) maximum along x'

36. Let
$$f_n(x) = \begin{cases} 0, & x < -\frac{1}{2n} \\ n, & -\frac{1}{2n} < x < \frac{1}{2n} \\ 0, & \frac{1}{2n} < x \end{cases}$$

(b) maximum along y'

(d) maximum along z'

The value of $\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) \sin x \, dx$ is _____.

37. Consider a two dimensional crystal with 3 atoms in the basis. The number of allowed optical branches (n) and acoustic branches (m) due to the lattice vibrations are

(a) (n, m) = (3, 3) (b) (n, m) = (2, 4) (c) (n, m) = (4, 2) (d) (n, m) = (1, 5)

- 38. Consider a one-dimensional non-magnetic crystal with one atom per unit cell. Assume that the valence electrons (i) do not interact with each other and (ii) interact weakly with the ions. If n is the number of valence electrons per unit cell, then at 0 K.
 - (a) the crystal is metallic for even values of n (b) the crystal is metallic for any value of n
 - (c) the crystal is non-metallic for any value of n (d) the crystal is metallic for odd values of n
- 39. In the center of mass frame, two protons each having energy 7000 GeV, collide to produce protons and antiprotons. The maximum number of anti-protons produced is _____. (Assume the proton mass to be $1 \text{ GeV}/c^2$)
- 40. The radial wave function of a particle in a central potential is given by $R(r) = A \frac{r}{a} \exp\left(-\frac{r}{2a}\right)$, where A is the

normalization constant and *a* is positive constant of suitable dimensions. If γa is the most probable distance of the particle from the force center, the value of γ is _____.

41. The input voltage (V_{in}) to the circuit shown in the figure is $2 \cos(100 t)$ V. The output voltage (V_{out}) is

$$2\cos\left(100t - \frac{\pi}{2}\right)$$
 V. If $R = 1 \text{ k}\Omega$, the value of C (in μ F) is

(b)
$$0.1$$
 (c) 10 (d) 1

42. The potential energy of a particle of mass *m* is given by

(a) 100

$$U(x) = a \sin\left(k^2 x - \frac{\pi}{2}\right), \, a > 0, \, k^2 > 0$$

The angular frequency of small oscillations of the particle about x = 0 is

(a)
$$2k^2 \sqrt{a/m}$$
 (b) $k^2 \sqrt{a/2m}$ (c) $k^2 \sqrt{a/m}$ (d) $k^2 \sqrt{2a/m}$

43. Consider the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}'$, where

$$\hat{H}_0 = \begin{pmatrix} E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & E \end{pmatrix} \text{ and } \hat{H}' \text{ is the time independent perturbation given by } \hat{H}' = \begin{pmatrix} 0 & k & 0 \\ k & 0 & k \\ 0 & k & 0 \end{pmatrix}, \text{ where } k > 0.$$

If, the maximum energy eigenvalue of \hat{H} is 3 eV corresponding to E = 2 eV, the value of k (rounded off to three dimensional places) in eV is _____.

- 44. If $x = \sum_{k=1}^{\infty} a_k \sin kx$, for $-\pi \le x \le \pi$, the value of a_2 is _____.
- 45. A sinusoidal voltage of the form $V(t) = V_0 \cos(\omega t)$ is applied across a parallel plate capacitor placed in vacuum. Ignoring the edge effects, the induced e.m.f. within the region between the capacitor plates can be expressed as a power series in ω . The lowest non-vanishing exponent in ω is _____.
- 46. The product of eigenvalues of $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ is (a) 0 (b) -1 (c) 2 (d) 1

47. Let $|e_1\rangle \equiv \begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $|e_2\rangle \equiv \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ and $|e_3\rangle \equiv \begin{pmatrix} 1\\1\\1 \end{pmatrix}$. Let $S = \{|e_1\rangle, |e_2\rangle, |e_3\rangle\}$. Let \mathbb{R}^3 denote the three-dimensional real

vector space. Which one of the following is correct ?(a) *S* is a linearly dependent set(b) *S* is an orthonormal set

- (c) S is a basis for \mathbb{R}^3 (d) $\sum_{i=1}^3 |e_i\rangle \langle e_i| = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- 48. Consider a 4-bit counter constructed out of four flip-flops. It is formed by connecting the J and K inputs to logic high and feeding the Q output to the clock input of the following flip-flop (see the figure). The input signal to the counter is a series of square pulses and the change of state is triggered by the falling edge. At time $t = t_0$ the outputs are in logic low state ($Q_0 = Q_1 = Q_2 = Q_3 = 0$). Then at $t = t_1$, the logic state of the outputs is

49. A Hydrogen atom is in an orbital angular momentum state $|l, m = l\rangle$. If \vec{L} lies on a cone which makes a half angle 30° with respect to the *z*-axis, the value of *l* is _____.

50. The Planck's energy density distribution is given by $u(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3 \left(e^{\hbar\omega/k_B T} - 1\right)}$. At long wavelengths, the

energy density of photons in thermal equilibrium with a cavity at temperature T varies T^{α} , where α is _____.

- 51. An electron in a hydrogen atom is in the state n = 3, l = 2, m = -2. Let \hat{L}_y denote the y-component of the orbital angular momentum operator. If $(\Delta \hat{L}_y)^2 = \alpha \hbar^2$, the value of α is _____.
- 52. Consider a simple cubic monoatomic Bravais lattice which has a basis with vectors $\vec{r_1} = 0$, $\vec{r_2} = \frac{a}{4}(\hat{x} + \hat{y} + \hat{z})$, *a* is the lattice parameter. The Bragg reflection is observed due to the change in the wave vector between the incident and the scattered beam as given by $\vec{K} = n_1 \vec{G_1} + n_2 \vec{G_2} + n_3 \vec{G_3}$, where $\vec{G_1}$, $\vec{G_2}$ and $\vec{G_3}$ are primitive reciprocal lattice vectors. For $n_1 = 3$, $n_2 = 3$ and $n_3 = 2$ the geometrical structure factor is _____.
- 53. Consider the circuit given in the figure. Let the forward voltage drop across each diode be 0.7 V. The current I (in mA) through the resistor is _____.

54. The internal energy U of a system is given by $U(S, V) = \lambda V^{-2/3} S^2$, where λ is a constant of appropriate dimensions; V and S denote the volume and entropy, respectively. Which one of the following gives the correct equation of state of the system ?

(a)
$$\frac{P}{V^{1/3}T} = \text{constant}$$
 (b) $\frac{PV}{T^{1/3}} = \text{constant}$ (c) $\frac{PV^{2/3}}{T} = \text{constant}$ (d) $\frac{PV^{1/3}}{T^2} = \text{constant}$

55. Consider a gas of hydrogen atoms in the atmosphere of the Sun where the temperature is 5800 K. If a sample from this atmosphere contains 6.023×10^{23} of hydrogen atoms in the ground state, the number of hydrogen atoms in the first excited state is approximately 8×10^n , where *n* is an integer. The value of *n* is _____. (Boltzmann constant: $8.617 \times 10^{-5} \text{ eV/K}$)