CSIR-NET - MATHEMATICAL SCIENCES **JUNE 2015**

PART - B (Mathematical Sciences)

UNIT-1

- 21. Let $f: X \to X$ such that f(f(x)) = x for all $x \in X$. Then,
 - (a) f is one-to-one and onto.
- (b) f is one-to-one, but not onto.
- (c) f is onto but not one-to-one.
- (d) f need not be either one-to-one or onto.
- Let V be the space of twice differentiable functions on $\mathbb R$ satisfying f''-2f'+f=0. Define $T:V\to\mathbb R^2$ 22.

by T(f) = (f'(0), f(0)). Then T is:

(a) one-to-one and onto

(b) one-to-one but not onto

(c) onto but not one-to-one

(d) neither one-to-one nor onto

- The limit $\lim_{x\to 0} \frac{1}{x} \int_{-t}^{2x} e^{-t^2} dt$ 23.
 - (a) does not exist
- (b) is infinite
- (c) exists and equals 1 (d) exists and equals 0
- The sum of the series: $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \cdots$ equals 24.
 - (a) e

- (d) $1 + \frac{e}{2}$
- Which of the following subsets of \mathbb{R}^n is compact (with respect to the usual topology of \mathbb{R}^n)? 25.

 - (a) $\{(x_1, x_2, ..., x_n) : |x_i| < 1, 1 \le i \le n\}$ (b) $\{(x_1, x_2, ..., x_n) : x_1 + x_2 + ... + x_n = 0\}$
 - (c) $\{(x_1, x_2, ..., x_n) : x_i \ge 0, 1 \le i \le n\}$
- (d) $\{(x_1, x_2, ..., x_n): 1 \le x_i \le 2^i, 1 \le i \le n\}$
- A polynomial of odd degree with real coefficient must have 26.
 - (a) at least one real root.

(b) no real root.

(c) only real roots.

- (d) at least one root which is not real.
- Let A, B be $n \times n$ matrices. Which of the following equals trace (A^2B^2) ? 27.
 - (a) $(trace(AB))^2$
- (b) trace(AB^2A)
- (c) trace($(AB)^2$)
- (d) trace(BABA)
- 28. Let A be an $m \times n$ matrix of rank n with real entries. Choose the correct statement.
 - (a) Ax = b has a solution for any b.
 - (b) Ax = 0 does not have a solution.
 - (c) If Ax = b has a solution, then it is unique.
 - (d) y'A = 0 for some non-zero y, where y' denotes the transpose of the vector y.

- 29. The row space of a 20×50 matrix A has dimension 13. What is the dimension of the space of solutions of Ax = 0?
 - (a) 7
- (b) 13
- (c) 33
- (d) 37
- Let T be a 4×4 real matrix such that $T^4 = 0$. Let $k_i := \dim \ker T^i$ for $1 \le i \le 4$. Which of the following is 30. NOT a possibility for the sequence $k_1 \le k_2 \le k_3 \le k_4$?
 - (a) $3 \le 4 \le 4 \le 4$
- (b) $1 \le 3 \le 4 \le 4$
- (c) $2 \le 4 \le 4 \le 4$ (d) $2 \le 3 \le 4 \le 4$
- Given a 4×4 real matrix A, let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by Tv = Av, where we think 31. of \mathbb{R}^4 as the set of real 4×1 matrices. For which choices of A given below, do Image (T) and Image (T^2) have respective dimensions 2 and 1? [* denotes a non-zero entry]
 - (a) $A = \begin{vmatrix} 0 & 0 & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{vmatrix}$
- (b) $A = \begin{vmatrix} 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{vmatrix}$

- Which of the following is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 ? 32.
 - (1) $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ x+y \end{pmatrix}$ (2) $g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ x+y \end{pmatrix}$ (3) $h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z-x \\ x+y \end{pmatrix}$

- (a) only f
- (c) only h

(b) only g (d) all the transformation f, g and h

UNIT-2

functions:

Let f be a real valued harmonic function on \mathbb{C} , that is, f satisfies the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Define the 33.

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}; \ h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

Then,

- (a) g and h are both holomorphic functions.
- (b) *g* is holomorphic, but *h* need not be holomorphic.
- (c) *h* is holomorphic, but *g* need not be holomorphic.
- (d) both g and h are identically equal to the zero function.

34.
$$\int_{|z+1|=2} \frac{z^2}{4-z^2} dz =$$

(a) 0

(b) $-2\pi i$

(c) $2\pi i$

(d) 1

Let D be the set of tuples $(w_1,...,w_{10})$, where $w_i \in \{1,2,3\}$, $1 \le i \le 10$ and $w_i + w_{i+1}$ is an even number for 35. each *i* with $1 \le i \le 9$. Then the number of elements in *D* is :

(a) $2^{11} + 1$

(b) $2^{10} + 1$

(c) $3^{10} + 1$

(d) $3^{11} + 1$

How many elements does the set, $\{z \in \mathbb{C} \mid z^{60} = -1, z^k \neq -1 \text{ for } 0 < k < 60\}$ have? 36.

37. Up to isomorphism, the number of abelian groups of order 108 is:

(a) 12

(b) 9

(c) 6

(d) 5

Let R be the ring $\mathbb{Z}[x]/((x^2+x+1)(x^3+x+1))$ and I be the ideal generated by 2 in R. What is the cardinal-38. ity of the ring R?

(a) 27

(b) 32

(c) 64

(d) Infinite

The number of subfields of a field of cardinality 2^{100} is: 39.

(b) 4

(d) 100

Let, for each $n \ge 1$, C_n be the open disc in \mathbb{R}^2 , with centre at the point (n, 0) and radius equal to n. Then, 40. $C = \bigcup_{n > 1} C_n$ is:

(a) $\{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } |y| < x\}$ (b) $\{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } |y| < 2x\}$

(c) $\{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } |y| < 3x\}$ (d) $\{(x, y) \in \mathbb{R}^2 : x > 0\}$

UNIT-3

Let $a, b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then the Cauchy problem 41.

$$a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = 1; x, y \in \mathbb{R}$$

u(x, y) = x on ax + by = 1

(a) has more than one solution if either a or b is zero.

(b) has no solution.

(c) has a unique solution.

(d) has infinitely many solutions.

Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial of the form $f(x) = a_0 + a_1 x + a_2 x^2$ with $a_0, a_1, a_2 \in \mathbb{R}$ and $a_2 \neq 0$, if 42.

$$E_1 = \int_{-1}^{1} f(x) dx - [f(-1) + f(1)], \qquad E_2 = \int_{-1}^{1} f(x) dx - \frac{1}{2} (f(-1) + 2f(0) + f(1))$$

and |x| is the absolute value of $x \in \mathbb{R}$, then —

(a) $|E_1| < |E_2|$ (b) $|E_1| = 2|E_2|$ (c) $|E_1| = 4|E_2|$ (d) $|E_1| = 8|E_2|$

43.	The integral equation, $y(x) = \lambda \int_{0}^{1} (3x - 2)t \ y(t) dt$, with λ as a parameter, has			
	(a) only one characteristic number.(c) more than two characteristic numbers.	(b) two characteristic number.(d) no characteristic number.		
44.	Let $y(x)$ be a continuous solution of the initial value problem			

$$y' + 2y = f(x), \ y(0) = 0, \text{ where } f(x) = \begin{cases} 1 & ; & 0 \le x \le 1 \\ 0 & ; & x > 1 \end{cases}$$

Then $y\left(\frac{3}{2}\right)$ is equal to:

(a)
$$\frac{\sinh{(1)}}{e^3}$$
 (b) $\frac{\cosh{(1)}}{e^3}$ (c) $\frac{\sinh{(1)}}{e^2}$ (d) $\frac{\cosh{(1)}}{e^2}$

- 45. Consider two weightless, inextensible rods AB and BC, suspended at A and joined by a flexible joint at B. Then the degrees of freedom of the system is:
 - (d) 6(a) 3 (b) 4 (c) 5
- The singular integral of the ODE $(xy' y)^2 = x^2(x^2 y^2)$ is: 46.
 - (b) $y = x \sin\left(x + \frac{\pi}{4}\right)$ (c) y = x(d) $y = x + \frac{\pi}{4}$
- 47. Consider the initial value problem

$$\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0, \ u(0, y) = 4e^{-2y}$$

Then the value of u(1,1) is:

(a)
$$4e^{-2}$$
 (b) $4e^2$ (c) $2e^{-4}$ (d) $4e^4$

- The initial value problem $y' = 2\sqrt{y}$, y(0) = a, has 48.
 - (a) a unique solution if a < 0(b) no solution if a > 0
 - (c) infinitely many solutions if a = 0(d) a unique solution if $a \ge 0$

UNIT-4

- 49. Ten balls are put in 6 slots at random. Then the expected total number of balls in the two extreme slots is:
 - (b) $\frac{10}{3}$ (c) $\frac{1}{6}$ (d) $\frac{6}{10}$ (a) $\frac{10}{6}$
- Let X, Y be independent random variables and let $Z = \frac{X Y}{2} + 3$. If X has characteristic function ψ , then Z 50. has characteristic function θ where

(a)
$$\theta(t) = e^{-i3t} \phi(2t) \psi(-2t)$$

(b)
$$\theta(t) = e^{i3t} \phi\left(\frac{t}{2}\right) \psi\left(-\frac{t}{2}\right)$$

(c)
$$\theta(t) = e^{-i3t} \phi\left(\frac{t}{2}\right) \psi\left(\frac{t}{2}\right)$$

(d)
$$\theta(t) = e^{-i3t} \phi\left(\frac{t}{2}\right) \psi\left(-\frac{t}{2}\right)$$

- 51. Suppose X_n , X are random variables such that X_n converges in distribution to X and $(-1)^n X_n$ also converges in distribution to X. Then,
 - (a) *X* must have a symmetric distribution.
- (b) *X* must be 0.

(c) X must have a density.

- (d) X^2 must be constant.
- 52. $\{N(t): t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Let $X_n = N(n)$, n = 0, 1, 2, ... Which of the following is *correct*?
 - (a) $\{X_n\}$ is a transient Markov chain.
 - (b) $\{X_n\}$ is a recurrent Markov chain, but has no stationary distribution.
 - (c) $\{X_n\}$ has a stationary distribution.
 - (d) $\{X_n\}$ is an irreducible Markov chain.
- 53. Assume that $X \sim \text{Binomial } (n, p)$ for some $n \ge 1$ and $0 and <math>Y \sim \text{Poisson } (\lambda)$ for some $\lambda > 0$. Suppose E[X] = E[Y]. Then
 - (a) Var(X) = Var(Y)
 - (b) Var(X) < Var(Y)
 - (c) Var(Y) < Var(X)
 - (d) Var(X) may be larger or smaller than Var(Y) depending on the values of n, p and λ .
- 54. Let $X_1, X_2, ..., X_7$ be a random sample from $N(\mu, \sigma^2)$, where μ and σ^2 are unknown. Consider the problem of testing $H_0: \mu = 2$ against $H_1: \mu > 2$. Suppose the observed values of $x_1, x_2, ..., x_7$ are 1.2, 1.3, 1.7, 1.8, 2.1, 2.3, 2.7. If we use the Uniformly Most Powerful test, which of the following is true?
 - (a) H_0 is accepted both at 5% and 1% levels of significance.
 - (b) H_0 is rejected both at 5% and 1% levels of significance.
 - (c) H_0 is rejected at 5% level of significance, but accepted at 1% level of significance.
 - (d) H_0 is rejected at 1% level of significance, but accepted at 5% level of significance.
- Suppose $X_i | \theta_i \sim N(\theta_i, \sigma^2)$, i = 1, 2 are independently distributed. Under the prior distribution, θ_1 and θ_2 are i.i.d. $N(\mu, \tau^2)$, where σ^2 , μ and τ^2 are known. Then which of the following is true about the marginal distribution of X_1 and X_2 ?
 - (a) X_1 and X_2 are i.i.d. $N(\mu, \tau^2 + \sigma^2)$.
 - (b) X_1 and X_2 are not normally distributed.

- (c) X_1 and X_2 are $N(\mu, \tau^2 + \sigma^2)$ but they are not independent.
- (d) X_1 and X_2 are normally distributed but are not identically distributed.
- Consider the model $Y_i = i\beta + \varepsilon_i$, i = 1, 2, 3 where $\varepsilon_1, \varepsilon_2, \varepsilon_3$ are independent with mean 0 and variance 56. σ^2 , $2\sigma^2$, $3\sigma^2$ respectively. Which of the following is the best linear unbiased estimate of β ?
 - (a) $\frac{y_1 + 2y_2 + 3y_3}{6}$

(b) $\frac{6}{11} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} \right)$

(c) $\frac{y_1 + y_2 + y_3}{\epsilon}$

- (d) $\frac{3y_1 + 2y_2 + y_3}{10}$
- Let $Y = (Y_1, ..., Y_n)'$ have the multivariate normal distribution $N_n(0, I)$. Which of the following is the covari-57. ance matrix of the conditional distribution of Y given $\sum_{i=1}^{n} Y_i$?

[1 denotes the $n \times 1$ vector with all elements 1]

- (a) *I*
- (b) $I + \frac{11'}{n}$ (c) $I \frac{11'}{n}$
- Suppose there are k strata of N = kM units each with size M. Draw a sample of size n_i with replacement 58. from the *i*-th stratum and denote by \overline{y}_i the sample mean of the study variable selected in the *i*-th stratum,

i = 1, 2, ..., k. Define $\overline{y}_s = \frac{1}{k} \sum_{i=1}^k \overline{y}_i$ and $\overline{y}_w = \frac{\sum_{i=1}^k n_i \overline{y}_i}{n}$. Which of the following is necessarily true?

- (a) \overline{y}_s is unbiased but \overline{y}_w is not unbiased for the population mean.
- (b) \overline{y}_s is not unbiased but \overline{y}_w is unbiased for the population mean.
- (c) Both \overline{y}_s and \overline{y}_w are unbiased for the population mean.
- (d) Neither \overline{y}_s nor \overline{y}_w is unbiased for the population mean.
- 59. Consider a Balanced Incomplete Block Design (BIBD) with parameters (b, k, v, r, λ) . Which of the following cannot possibly by the parameters of a BIBD?
 - (a) $(b-1, k-\lambda, b-k, k, \lambda)$
- (b) $(b, v-k, v, b-r, b-2r + \lambda)$

(c) $\left(\frac{v(v-1)}{2}, 2, v, v-1, 1\right)$

- (d) $(k, b, r, v, \lambda 1)$
- 60. Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables having an exponential distribution with mean $1/\lambda$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and $N = \inf \{ n \ge 1 : S_n > 1 \}$. Then Var(N) equals
 - (a) 1
- (b) λ
- (c) λ^2
- (d) ∞

PART - C (Mathematical Sciences)

UNIT-1

61. For
$$n \ge 1$$
, let $g_n(x) = \sin^2\left(x + \frac{1}{n}\right)$, $x \in [0, \infty)$ and $f_n(x) = \int_0^x g_n(t) dt$. Then,

- (a) $\{f_n\}$ converges pointwise to a function f on $[0,\infty)$, but does not converge uniformly on $[0,\infty)$.
- (b) $\{f_n\}$ does not converge pointwise to any function on $[0, \infty)$.
- (c) $\{f_n\}$ converges uniformly on [0, 1].
- (d) $\{f_n\}$ converges uniformly on $[0, \infty)$.
- Let 'a' be a positive real number. Which of the following integrals are convergent? 62.

(a)
$$\int_{0}^{a} \frac{1}{x^4} dx$$

(b)
$$\int_{0}^{a} \frac{1}{\sqrt{x}} dx$$

(c)
$$\int_{4}^{\infty} \frac{1}{x \log_{e} x} dx$$

(b)
$$\int_{0}^{a} \frac{1}{\sqrt{x}} dx$$
 (c) $\int_{4}^{\infty} \frac{1}{x \log_{e} x} dx$ (d) $\int_{5}^{\infty} \frac{1}{x (\log_{e} x)^{2}} dx$

Which of the following sets in \mathbb{R}^2 have positive Lebesgue measure? 63.

For two sets
$$A, B \subseteq \mathbb{R}^2$$
, $A + B = \{a + b \mid a \in A, b \in B\}$

(a)
$$S = \{(x, y) | x^2 + y^2 = 1\}$$

(b)
$$S = \{(x, y) | x^2 + y^2 < 1\}$$

(c)
$$S = \{(x, y) \mid x = y\} + \{(x, y) \mid x = -y\}$$

(c)
$$S = \{(x, y) \mid x = y\} + \{(x, y) \mid x = -y\}$$
 (d) $S = \{(x, y) \mid x = y\} + \{(x, y) \mid x = y\}$

64. Which of the following sets of functions are uncountable? $[\mathbb{N}]$ stands for the set of natural numbers

(a)
$$\{f \mid f : \mathbb{N} \to \{1, 2\}\}$$

(b)
$$\{f \mid f : \{1, 2\} \to \mathbb{N}\}$$

(c)
$$\{f \mid f : \{1, 2\} \to \mathbb{N}, f(1) \le f(2)\}$$
 (d) $\{f \mid f : \mathbb{N} \to \{1, 2\}, f(1) \le f(2)\}$

(d)
$$\{f \mid f : \mathbb{N} \to \{1, 2\}, f(1) \le f(2)\}$$

- Let f be a bounded functions on \mathbb{R} and $a \in \mathbb{R}$. For $\delta > 0$, let $\omega(a, \delta) = \sup |f(x) f(a)|$, 65. $x \in [a - \delta, a + \delta]$. Then,
 - (a) $\omega(a, \delta_1) \le \omega(a, \delta_2)$ if $\delta_1 \le \delta_2$
- (b) $\lim_{\delta \to 0^+} \omega(a, \delta) = 0$ for all $a \in \mathbb{R}$
- (c) $\lim_{\delta \to 0^+} \omega(a, \delta)$ need not exist
- (d) $\lim \omega(a, \delta) = 0$ if and only if f is continuous at a
- For $n \ge 2$, let $a_n = \frac{1}{n \log n}$. Then, 66.

 - (a) The sequence $\{a_n\}_{n=2}^{\infty}$ is convergent. (b) The series $\sum_{n=2}^{\infty} a_n$ is convergent.
 - (c) The series $\sum_{n=2}^{\infty} a_n^2$ is convergent.
- (d) The series $\sum_{n=2}^{\infty} (-1)^n a_n$ is convergent.

- Let $\{a_0, a_1, a_2, ...\}$ be a sequence of real numbers. For any $k \ge 1$, let $s_n = \sum_{k=0}^n a_{2k}$. Which of the following 67. statements are correct?

 - (a) If $\lim_{n \to \infty} s_n$ exists, then $\sum_{m=0}^{\infty} a_m$ exists. (b) If $\lim_{n \to \infty} s_n$ exists, then $\sum_{m=0}^{\infty} a_m$ need not exist.

 - (c) If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ exists. (d) If $\sum_{m=0}^{\infty} a_m$ exists, then $\lim_{n\to\infty} s_n$ need not exist.
- Let $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the function $F(x, y) = \langle Ax, y \rangle$, where \langle , \rangle is the standard inner product of \mathbb{R}^n 68. and A is a $n \times n$ real matrix. Here, D denotes the total derivative. Which of the following statements are correct?
 - (a) $(DF(x, y))(u, v) = \langle Au, y \rangle + \langle Ax, v \rangle$
 - (b) (DF(x, y))(0, 0) = 0
 - (c) DF(x, y) may not exist for some $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$
 - (d) DF(x, y) does not exist at (x, y) = (0, 0)
- Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that $\int_{\mathbb{R}^n} |f(x)| dx < \infty$. Let A be a real $n \times n$ invertible matrix 69. and for $x, y \in \mathbb{R}^n$, let $\langle x, y \rangle$ denote the standard inner product in \mathbb{R}^n . Then $\int_{\mathbb{R}^n} f(Ax) e^{i\langle y, x \rangle} dx = \int_{\mathbb{R}^n} f(Ax) e^{i\langle y, x \rangle} dx$
 - (a) $\int_{\mathbb{R}^{n}} f(x)e^{i\langle (A^{-1})^{T}y, x\rangle} \frac{dx}{\left|\det A\right|}$ (b) $\int_{\mathbb{R}^{n}} f(x)e^{i\langle A^{T}y, x\rangle} \frac{dx}{\left|\det A\right|}$ (c) $\int_{\mathbb{R}^{n}} f(x)e^{i\langle (A^{T})^{-1}y, x\rangle} dx$ (d) $\int_{\mathbb{R}^{n}} f(x)e^{i\langle A^{-1}y, x\rangle} \frac{dx}{\left|\det A\right|}$
 - (c) $\int_{\mathbb{D}^n} f(x) e^{i\langle (A^T)^{-1}y, x\rangle} dx$
- (d) $\int_{\mathbb{R}^n} f(x) e^{i\langle A^{-1}y, x\rangle} \frac{dx}{|\det A|}$
- An $n \times n$ complex matrix A satisfies $A^k = I_n$, the $n \times n$ identity matrix, where k is a positive integer >1. 70. Suppose 1 is not an eigenvalue of A. Then which of the following statements are necessarily true?
 - (a) A is diagonalizable

- (b) $A + A^2 + \cdots + A^{k-1} = 0$, the $n \times n$ zero matrix.
- (c) $tr(A) + tr(A^2) + \dots + tr(A^{k-1}) = -n$
- (d) $A^{-1} + A^{-2} + \dots + A^{-(k-1)} = -I_n$
- Let S be the set of 3×3 real matrices A with $A^T A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then the set S contains 71.
 - (a) a nilpotent matrix.

(b) a matrix of rank one.

(c) a matrix of rank two.

- (d) a non-zero skew-symmetric matrix.
- Let $S: \mathbb{R}^n \to \mathbb{R}^n$ be given by $S(v) = \alpha v$ for a fixed $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transforma-72. tion such that $B = \{v_1, ..., v_n\}$ is a set of linearly independent eigenvectors of T. Then,

- (a) The matrix of T with respect to B is diagonal.
- (b) The matrix of (T S) with respect to B is diagonal.
- (c) The matrix of T with respect to B is not necessarily diagonal, but is upper triangular.
- (d) The matrix of T with respect to B is diagonal but the matrix of (T S) with respect to B is not diagonal.
- 73. Let $A = \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}$ be a 3×3 matrix where a, b, c, d are integers. Then, we must have:
 - (a) If $a \neq 0$, there is a polynomial $p \in \mathbb{Q}[x]$ such that p(A) is the inverse of A.
 - (b) For each polynomial $q \in \mathbb{Z}[x]$, the matrix $q(A) = \begin{pmatrix} q(a) & q(b) & q(c) \\ 0 & q(a) & q(d) \\ 0 & 0 & q(a) \end{pmatrix}$
 - (c) If $A^n = 0$ for some positive integer n, then $A^3 = 0$.
 - (d) A commutes with every matrix of the form $\begin{pmatrix} a' & 0 & c' \\ 0 & a' & 0 \\ 0 & 0 & a' \end{pmatrix}$.
- 74. Let $p_n(x) = x^n$ for $x \in \mathbb{R}$ and let $\wp = span\{p_0, p_1, p_2, ...\}$. Then,
 - (a) \wp is the vector space of all real valued continuous functions on \mathbb{R} .
 - (b) \wp is a subspace of all real valued continuous functions on \mathbb{R} .
 - (c) $\{p_0, p_1, p_2, ...\}$ is a linearly independent set in the vector space of all continuous functions on \mathbb{R} .
 - (d) Trigonometric functions belong to \wp .
- 75. Which of the following are subspaces of the vector space \mathbb{R}^3 ?

(a)
$$\{(x, y, z) : x + y = 0\}$$

(b)
$$\{(x, y, z) : x - y = 0\}$$

(c)
$$\{(x, y, z): x + y = 1\}$$

(d)
$$\{(x, y, z): x - y = 1\}$$

- 76. Let A be an invertible 4×4 real matrix. Which of the following are NOT true?
 - (a) Rank A = 4
 - (b) For every vector $b \in \mathbb{R}^4$, Ax = b has exactly one solution.
 - (c) $\dim(\text{null space }A) \ge 1$
 - (d) 0 is an eigenvalue of A.
- 77. Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1 : V_1 \to V_2$, $\phi_2 : V_2 \to V_3$, $\phi_3 : V_3 \to V_4$ such that $\ker(\phi_1) = \{0\}$, Range $(\phi_1) = \ker(\phi_2)$. Range $(\phi_2) = \ker(\phi_3)$, Range $(\phi_3) = V_4$. Then

(a)
$$\sum_{i=1}^{4} (-1)^i \dim V_i = 0$$

(b)
$$\sum_{i=2}^{4} (-1)^i \dim V_i > 0$$

(c)
$$\sum_{i=1}^{4} (-1)^{i} \dim V_{i} < 0$$

(d)
$$\sum_{i=1}^{4} (-1)^{i} \dim V_{i} \neq 0$$

- Let \underline{u} be a real $n \times 1$ vector satisfying $\underline{u'u} = 1$, where $\underline{u'}$ is the transpose of \underline{u} . Define $A = I 2\underline{u}\underline{u'}$, where 78. *I* is the *n*-th order identity matrix. Which of the following statements are true?
 - (a) A is singular
- (b) $A^2 = A$
- (c) Trace (A) = n 2 (d) $A^2 = I$

UNIT-2

- 79. Let f be an entire function. Which of the following statements are correct?
 - (a) f is constant if the range of f is contained in a straight line.
 - (b) f is constant if f has uncountably many zeros.
 - (c) f is constant if f is bounded on $\{z \in \mathbb{C} : \text{Re}(z) \le 0\}$.
 - (d) f is constant if the real part of f is bounded.
- 80. Consider the following subsets of the complex plane:

$$\Omega_1 = \left\{ C \in \mathbb{C} : \begin{bmatrix} 1 & C \\ \overline{C} & 1 \end{bmatrix} \text{ is non-negative definite (or equivalently positive semi-definite)} \right\}$$

$$\Omega_2 = \left\{ C \in \mathbb{C} : \begin{bmatrix} 1 & C & C \\ \overline{C} & 1 & C \\ \overline{C} & \overline{C} & 1 \end{bmatrix} \text{ is non-negative definite (or equivalently positive semi-definite)} \right\}$$

Let $\overline{D} = \{ z \in \mathbb{C} \mid |z| \le 1 \}$. Then,

(a)
$$\Omega_1 = \overline{D}, \ \Omega_2 = \overline{D}$$

(b)
$$\Omega_1 \neq \overline{D}, \, \Omega_2 = \overline{D}$$

(c)
$$\Omega_1 = \overline{D}, \ \Omega_2 \neq \overline{D}$$

(a)
$$\Omega_1 = \overline{D}$$
, $\Omega_2 = \overline{D}$ (b) $\Omega_1 \neq \overline{D}$, $\Omega_2 = \overline{D}$ (c) $\Omega_1 = \overline{D}$, $\Omega_2 \neq \overline{D}$ (d) $\Omega_1 \neq \overline{D}$, $\Omega_2 \neq \overline{D}$

Let p be a polynomial in 1-complex variable. Suppose all zeros of p are in the upper half plane 81. $H = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) > 0 \}$. Then,

(a)
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0 \text{ for } z \in \mathbb{R}$$

(b) Re
$$i \frac{p'(z)}{p(z)} < 0$$
 for $z \in \mathbb{R}$

(c)
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0$$
 for $z \in \mathbb{C}$, with $\operatorname{Im} z < 0$

(c)
$$\operatorname{Im} \frac{p'(z)}{p(z)} > 0$$
 for $z \in \mathbb{C}$, with $\operatorname{Im} z < 0$ (d) $\operatorname{Im} \frac{p'(z)}{p(z)} > 0$ for $z \in \mathbb{C}$, with $\operatorname{Im} z > 0$

Let f be an analytic function defined on the open unit disc in \mathbb{C} . Then f is constant if— 82.

(a)
$$f\left(\frac{1}{n}\right) = 0$$
 for all $n \ge 1$

(b)
$$f(z) = 0$$
 for all $|z| = \frac{1}{2}$

(c)
$$f\left(\frac{1}{n^2}\right) = 0$$
 for all $n \ge 1$

(d)
$$f(z) = 0$$
 for all $z \in (-1, 1)$

- 83. Let $\sigma: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ be a permutation (one-to-one and onto function) such that $\sigma^{-1}(j) \le \sigma(j)$ $\forall j, 1 \le j \le 5$. Then which of the following are true?
 - (a) $\sigma \circ \sigma(j) = j$ for all $j, 1 \le j \le 5$
 - (b) $\sigma^{-1}(j) = \sigma(j)$ for all $j, 1 \le j \le 5$
 - (c) The set $\{k : \sigma(k) \neq k\}$ has an even number of elements.
 - (d) The set $\{k : \sigma(k) = k\}$ has an odd number of elements.
- 84. Which of the following primes satisfy the congruence $a^{24} \equiv 6a + 2 \mod 13$?
 - (a) 41
- (b) 47
- (c) 67
- (d) 83
- 85. If x, y and z are elements of a group such that xyz = 1, then
 - (a) yzx = 1
- (b) yxz = 1
- (c) zxy = 1
- (d) zyx = 1
- 86. Which of the following cannot be the class equation of a group of order 10?
 - (a) 1+1+1+2+5=10

(b) 1 + 2 + 3 + 4 = 10

(c) 1 + 2 + 2 + 5 = 10

- (d) 1+1+2+2+2+2=10
- 87. Let C([0,1]) be the ring of all real valued continuous functions on [0,1]. Which of the following statements are true?
 - (a) C([0,1]) is an integral domain.
 - (b) The set of all functions vanishing at 0 is a maximal ideal.
 - (c) The set of all functions vanishing at both 0 and 1 is a prime ideal.
 - (d) If $f \in C([0,1])$ is such that $(f(x))^n = 0$ for all $x \in [0,1]$ for some n > 1, then f(x) = 0 for all $x \in [0,1]$.
- 88. Which of the following polynomials are irreducible in the ring $\mathbb{Z}[x]$ of polynomials in one variable with integer coefficients?
 - (a) $x^2 5$

(b) $1+(r+1)+(r+1)^2+(r+1)^3+(r+1)^4$

(c) $1 + x + x^2 + x^3 + x^4$

- (d) $1 + x + x^2 + x^4$
- 89. Determine which of the following polynomials are irreducible over the indicated rings.
 - (a) $x^5 3x^4 + 2x^3 5x + 8$ over \mathbb{R}
- (b) $x^3 + 2x^2 + x + 1$ over \mathbb{O}
- (c) $x^3 + 3x^2 6x + 3$ over \mathbb{Z}
- (d) $x^4 + x^2 + 1$ over $\mathbb{Z}/2\mathbb{Z}$
- 90. Consider the set \mathbb{Z} of integers, with the topology τ in which a subset is closed if and only if it is empty, or \mathbb{Z} , or finite. Which of the following statements are true?
 - (a) τ is the subspace topology induced from the usual topology on \mathbb{R} .
 - (b) \mathbb{Z} is compact in the topology τ .
 - (c) \mathbb{Z} is Hausdorff in the topology τ .
 - (d) Every infinite subset of $\mathbb Z$ is dense in the topology τ .

UNIT-3

91. For the initial value problem

$$\frac{dy}{dx} = y^2 + \cos^2 x, \ x > 0$$

$$y(0) = 0$$

The largest interval of existence of the solution predicted by Picard's theorem is:

- (a) [0, 1]
- (b) [0, 1/2]
- (c) [0, 1/3]
- (d) [0, 1/4]
- 92. For an arbitrary continuously differentiable function f, which of the following is a general solution of $z(px qy) = y^2 x^2$

(a)
$$x^2 + y^2 + z^2 = f(xy)$$

(b)
$$(x + y)^2 + z^2 = f(xy)$$

(c)
$$x^2 + y^2 + z^2 = f(y - x)$$

(d)
$$x^2 + y^2 + z^2 = f((x+y)^2 + z^2)$$

93. Let *P* be a continuous function on \mathbb{R} and *W* the Wronskian of two linearly independent solutions y_1 and y_2 of the ODE.

$$\frac{d^2y}{dx^2} + (1+x^2)\frac{dy}{dx} + P(x)y = 0, x \in \mathbb{R}$$

Let W(1) = a, W(2) = b and W(3) = c, then

(a) a < 0 and b > 0

(b) a < b < c or a > b > c

(c) $\frac{a}{|a|} = \frac{b}{|b|} = \frac{c}{|c|}$

- (d) 0 < a < b and b > c > 0
- 94. The following numerical integration formula is exact for all polynomials of degree less than or equal to 3.
 - (a) Trapezoidal rule

(b) Simpson's 1/3rd rule

(c) Simpson's 3/8th rule

- (d) Gauss-Legendre 2 point formula
- 95. A particle of mass m is contrained to move on the surface of a cylinder $x^2 + y^2 = a^2$ under the influence of a force directed towards the origin and proportional to the distance of the particle from the origin. Then,
 - (a) the angular momentum about z-axis is constant.
 - (b) the angular momentum about z-axis is not constant.
 - (c) the motion is simple harmonic in z-direction.
 - (d) the motion is not simple harmonic in z-direction.
- 96. The critical point of the system $\frac{dx}{dt} = -4x y$, $\frac{dy}{dt} = x 2y$ is an
 - (a) asymptotically stable node
- (b) unstable node
- (c) asymptotically stable spiral
- (d) unstable spiral

The function $G(x, \zeta) = \begin{cases} a + b \log \zeta, & 0 < x \le \zeta \\ c + d \log x, & \zeta \le x \le 1 \end{cases}$ 97.

is a Green's function for xy'' + y' = 0, subject in y being bounded as $x \to 0$ and y(1) = y'(1), if

- (a) a = 1, b = 1, c = 1, d = 1
- (b) a = 1, b = 0, c = 1, d = 0
- (c) a = 0, b = 1, c = 0, d = 1
- (d) a = 0, b = 0, c = 0, d = 0
- For the integral equation, $y(x) = 1 + x^3 + \int_0^x K(x, t) y(t) dt$ with kernel $K(x, t) = 2^{x-t}$, the iterated kernel 98.

 $K_3(x,t)$ is:

- (a) $2^{x-t}(x-t)^2$ (b) $2^{x-t}(x-t)^3$ (c) $2^{x-t-1}(x-t)^2$ (d) $2^{x-t-1}(x-t)^3$
- The extremal of the functional $I = \int_{0}^{x_1} y^2(y')^2 dx$ that passes through (0, 0) and (x_1, y_1) is: 99.
 - (a) a constant function

(b) a linear function of x

(c) part of a parabola

- (d) part of an ellipse
- The extremal of the functional $\int_{0}^{\alpha} (y'^2 y^2) dx$ that passes through (0, 0) and $(\alpha, 0)$ has a 100.
 - (a) weak minimum if $\alpha < \pi$

(b) strong minimum if $\alpha < \pi$

(c) weak minimum if $\alpha > \pi$

- (d) strong minimum if $\alpha > \pi$
- The second order partial differential equation, $u_{xx} + xu_{yy} = 0$ is 101.
 - (a) elliptic for x > 0

(b) hyperbola for x > 0

- (c) elliptic for x < 0
- (d) hyperbolic for x < 0
- Which of the following are complete integrals of the partial differential equations, $pqx + yq^2 = 1$? 102.
 - (a) $z = \frac{x}{a} + \frac{ay}{x} + b$

(b) $z = \frac{x}{b} + \frac{ay}{x} + b$

(c) $z^2 = 4(ax + v) + b$

(d) $(z-b)^2 = 4(ax + y)$

CSIR-NET – MATHEMATICAL SCIENCES JUNE 2015

(Answer Key) — PART - B (Mathematical Sciences)						
21 . (a)	22 . (d)	23 . (d)	24 . (d)	25 . (b)		
26 . (c)	27 . (d)	28 . (d)	29 . (b)	30 . (b)		
31 . (c)	32 . (a)	33 . (d)	34 . (c)	35 .(b)		
36 . (c)	37 .(c)	38 . (b)	39 . (a)	40 . (b)		
41 . (d)	42 . (a)	43 . (d)	44 . (b)	45 .(b)		
46 . (b)	47 . (c)	48 . (b)	49 . (d)	50 . (d)		
51 . (c)	52. (b)	53 . (d)	54 . (d)	55 .(b)		
56 . (b)	57 . (b)	58 . (a)	59 . (c)	60 . (b)		
(Answer Key) — PART - C (Mathematical Sciences)						
61 . (a), (c)	62 . (a), (c)	63 . (c), (d)	64 . (a), (b), (c), (d)	65 .(a), (b)		
66 . (d)	67. (c), (d)	68. (a), (b), (c)	69 . (*)	70 . (a), (c)		
71 . (c), (d)	72. (a), (b), (c), (d)	73 . (a), (b)	74 . (a), (b), (c), (d)	75. (a), (c)		
76 . (b), (d)	77. (a), (c)	78 . (a), (c), (d)	79 . (a), (d)	80. (b), (d)		
81 . (a)	82. (a), (b), (d)	83 . (c), (d)	84 . (c), (d)	85. (c), (d)		
86 . (d)	87 . (b), (c)	88. (a), (b), (c), (d)	89 . (a), (d)			
90. (a), (b), (c), (d)						
91 . (a), (b)	92. (b), (d)	93. (a), (b), (c), (d)	94 . (a), (b), (c)	95 .(c)		
96 . (c)	97. (a), (b), (c), (d)	98 . (d)	99 . (b), (c)	100 . (a),(c)		
101 . (a), (c)	102 . (c), (d)					

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009

North Delhi: 56-58, First Floor, Mall Road, G.T.B. Nagar (Near Metro Gate No. 3), Delhi-09, Ph: 011-41420035