CSIR-NET – MATHEMATICAL SCIENCES NOV. 2020

PART - B (Mathematical Sciences)

- 1. Let $S = \{u_1, ..., u_k\}$ be a subset of non-zero vectors from \mathbb{R}^n . Now, consider the two statements given below:
 - **I**: If *S* is linearly dependent set in \mathbb{R}^n then u_k is a linear combination of $u_1, ..., u_{k-1}$.

II: If *S* is linearly independent set in \mathbb{R}^n then k < n.

Which of the following statements is true?

- (a) Statement-I is FALSE and statement-II is TRUE.
- (b) Statement-I is TRUE and statement-II is FALSE.
- (c) Both statement-I and statement-II are FALSE.
- (d) Both statement-I and statement-II are TRUE.
- 2. Let a, b and c be distinct integers. Let A be the matrix.

$$A = \begin{pmatrix} a^2 & b^2 & c^2 \\ a^5 & b^5 & c^5 \\ a^{11} & b^{11} & c^{11} \end{pmatrix}$$

Which among the following is the set of all possible ranks of A?

- (a) $\{3\}$
- (b) $\{2,3\}$
- (c) $\{1, 2, 3\}$
- (d) {0, 1, 2, 3}
- 3. Which of the following is an inner product on the vector space of all real valued continuous functions on [0, 1]?

(a)
$$\langle f, g \rangle = \left| \int_{0}^{1} f(t) g(t) dt \right|$$

(b)
$$\langle f, g \rangle = \int_{0}^{1} |f(t)g(t)| dt$$

(c)
$$\langle f, g \rangle = f(0) g(0) + f(1) g(1)$$

(d)
$$\langle f, g \rangle = \int_{0}^{1} f(t) g(t) dt$$

4.
$$\lim_{n\to\infty}\frac{((n+1)(n+2)\cdots(n+n))^{1/n}}{n}$$

- (a) is equal to e/4
- (b) is equal to 4/e
- (c) is equal to e
- (d) does not exist
- 5. Suppose that A, B are two non-empty subsets of \mathbb{R} and $C = A \cap B$. Which of the following conditions imply that C is empty?
 - (a) A and B are open and C is compact.
- (b) A and B are open and C is closed.
- (c) A and B are both dense in \mathbb{R} .
- (d) A is open and B is compact.

6.	Let A be an $n \times n$ matrix of rank 1. Let $\alpha = \det(I + A)$, where I is the identity matrix and let $\beta = \operatorname{trace} A$
	Which of the following is true?

(a)
$$\beta - \alpha = 1$$

(b)
$$\alpha - \beta = 1$$

(c)
$$\alpha < \beta + 1$$

(a)
$$\beta - \alpha = 1$$
 (b) $\alpha - \beta = 1$ (c) $\alpha < \beta + 1$ (d) $\alpha > \beta + 1$

7. An infinite binary word
$$a$$
 is a string $(a_1 \, a_2 \, a_3 \, ...)$, where each $a_n \in [0, 1]$. Fix a word $s = (s_1 \, s_2 \, s_3 \, ...)$, where $s_n = 1$ if and only if n is prime. Let $S = \{a = (a_1 \, a_2 \, a_3 \, ...) \mid \exists m \in \mathbb{N} \text{ such that } a_n = s_n, \forall n \geq m \}$. What is the cardinality of S ?

(a) 1

(b) Finite but more than 1

(c) Countably infinite

(d) Uncountable

Let $Y = \{1, 2, 3, ..., 100\}$, and let $h: Y \to Y$ be a strictly increasing function. The total number of functions 8. $g: Y \to Y$ satisfying $g(h(j)) = h(g(j)), \forall j \in Y$ is:

(b) 100!

(c)
$$100^{100}$$

(d) 100^{98}

9. Let M be a 5×5 matrix with real entries such that Rank(M) = 3. Consider the linear system Mx = b. Let the row-reduced echelon form of the augmented matrix $[M \ b]$ be R and let R[i,:] denote the i-th row of R. Suppose that the linear system admits a solution. Which of the following statements is necessarily true?

(a)
$$R[3,:] = [0 \ 1 \ 0 * * * *]$$

(b)
$$R[5,:] = [0 \ 0 \ 1 \ 0 * *]$$

(c)
$$R[4,:] = [0 \ 0 \ 0 \ 1 * *]$$

(d)
$$R[4,:] = [0 \ 0 \ 0 \ 0 \ 0]$$

10. The sum of the infinite series:

$$S = \frac{1}{2} - \frac{1}{3 \times 1!} + \frac{1}{4 \times 2!} - \frac{1}{5 \times 3!} + \cdots$$

is equal to:

(a)
$$2 - \frac{1}{e}$$
 (b) $1 - \frac{2}{e}$

(b)
$$1 - \frac{2}{e}$$

(c)
$$\frac{2}{a} - 1$$

(d)
$$\frac{1}{e} - 2$$

Let us define a matrix $A \in M_n(\mathbb{R})$ to be positive if for every column vector $v \in \mathbb{R}^n$ we have $\langle Av, v \rangle \geq 0$, 11.

where
$$\langle .,. \rangle$$
 is the standard inner product on \mathbb{R}^n . Let $A_{\alpha,\beta} = \begin{pmatrix} \alpha & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & \beta \end{pmatrix}$.

Let $S = \{(\alpha, \beta) \in \mathbb{R}^2 : A_{\alpha, \beta} \text{ is positive}\}$. Which of the following statements is true?

(a) S is empty

(b) $(\alpha, \beta) \in S$ if and only if $\alpha\beta > 0$

(c) $(\alpha, \beta) \in S$ if and only if $\alpha + \beta + 4 > 0$ (d) $S = \mathbb{R}^2$

- Let f be a non-constant polynomial of degree k and let $g : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function. Which 12. of the following statements is necessarily true?
 - (a) There always exists $x_0 \in \mathbb{R}$ such that $f(x_0) = g(x_0)$.
 - (b) There is no $x_0 \in \mathbb{R}$ such that $f(x_0) = g(x_0)$.
 - (c) There exists $x_0 \in \mathbb{R}$ such that $f(x_0) = g(x_0)$ if k is even.
 - (d) There exists $x_0 \in \mathbb{R}$ such that $f(x_0) = g(x_0)$ if k is odd.

- 13. Which of the following statements is NOT true?
 - (a) The polynomial ring $\mathbb{Z}[x]$ is a Principal Ideal Domain (PID).
 - (b) The polynomial ring $\mathbb{Q}[x]$ is a Principal Ideal Domain (PID).
 - (c) The polynomial ring $\mathbb{Z}[x]$ is a Unique Factorization Domain (UFD).
 - (d) The polynomial ring $\mathbb{Q}[x]$ is a Unique Factorization Domain (UFD).
- Let G be a group of order 2020. Which of the following statements is necessarily true? 14.
 - (a) G is not a simple group.
- (b) G has exactly four proper subgroups.

(c) G is a cyclic group.

- (d) G is abelian.
- Let f be a holomorphic function on the disc $\{z \in \mathbb{C} : |z| < 2\}$. Assume that the only zero of f in the closed 15. unit disc $\{z \in \mathbb{C} : |z| \le 1\}$ is a simple zero at the origin. Let γ be the positively oriented circle $\{z \in \mathbb{C} : |z| = 1\}$.

The integral $\int_{z} \frac{dz}{f(z)}$ equals

- (a) $2\pi i f'(0)$
- (b) $2\pi i f''(0)$ (c) $\frac{2\pi i}{f'(0)}$
- Let f, g be entire functions such that $\lim_{z\to\infty} \frac{f(z)}{z^n} = \lim_{z\to\infty} \frac{g(z)}{z^n} = 1$ for some fixed positive integer n. Which of 16. the following statements is true?
 - (a) f = g
 - (b) f g is necessarily a polynomial of degree at most n 1
 - (c) There exist f, g with these properties such that f g is a polynomial of degree n.
 - (d) There exist f, g with these properties such that f g is not a polynomial.
- Define $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = |z|^2 1|^2$. Which of the following statements is true? 17.
 - (a) f is complex differentiable at all complex numbers except for $z \in \{0,1\}$.
 - (b) f is complex differentiable only at z = 0.
 - (c) f is complex differentiable only at z = 1.
 - (d) f is complex differentiable only for $z \in \{0, 1\}$.
- 18. A function $f: \mathbb{C} \to \mathbb{C}$ is said to be analytic at ∞ . If the function g defined by g(w) = f(1/w) is analytic at 0 with an appropriate value given for g(0). Which of the following statements is true?
 - (a) Any non-constant polynomial is analytic at ∞ .
 - (b) If f is analytic at ∞ then f is bounded.
 - (c) For any z_0 in \mathbb{C} , the function $f(z) = \frac{1}{e^{z-z_0}}$ is analytic at ∞ .
 - (d) Any entire function can be extended to an analytic function at ∞ .

19.	The last two digits of (a) 27	f 3 ²⁰¹⁹ are: (b) 37	(c) 57	(d) 67		
20.	Suppose $f:[0,1]\times[0,1]\to(0,1)\times(0,1)$ is a continuous non-constant function. Which of the following statements is NOT true?					
	(a) Image of f is uncountable.		(b) Image of f	(b) Image of f is a path connected set.		
	(c) Image of f is a	compact set.	(d) Image of f 1	has non-empty interior.		
21.	Consider the ODE t	$\dot{y} - 3y = t^2 y^{1/2} y(1) =$	= 1 . Find the value of	v(2)		
21.	(a) 14	(b) 16	(c) 0	(d) 8		
22.	For $\lambda \in \mathbb{R}$ consider	the system of different	ial equations.			
	$x_1' = x_1 + 2x_2 + 2x_3,$					
	$x_2' = 2x_2 + x_3,$	3				
	$x_3' = -x_3 + 2x_2$	$+\lambda x_3$				
	If $\vec{x}(t) = \vec{\alpha}te^{2t}$ (for some $\vec{\alpha}$) is a solution of the system then the value of λ is equal to:					
	(a) 2	(b) 4	(c) 6	(d) 1		
23.	Consider the Newton-Raphson method applied to approximate the square root to a positive number α . A					
	recursion relation for the error $e_n = x_n - \sqrt{\alpha}$ is given by:					
	(a) $e_{n+1} = \frac{1}{2} \left(e_n + \frac{e_n}{e_n} \right)$	$\left(\frac{\chi}{n}\right)$	(b) $e_{n+1} = \frac{1}{2} \left(e_n \right)$	$-rac{lpha}{e_n}$		
	(c) $e_{n+1} = \frac{1}{2} \frac{e_n^2}{e_n + \sqrt{e_n^2}}$	= α	(d) $e_{n+1} = \frac{e_n^2}{e_n + 2}$	$\frac{2}{2\sqrt{\alpha}}$		
24.	A body moves freely in a uniform gravitational field, the trajectory lies on which of the following curves in phase space ?					
	(a) Straight line in pl	hase space.	(b) Parabola in p	phase space.		
	(c) Hyperbola in pha	*	(d) Ellipse in pha	•		
25.	Which of the following is a solution to $u_x + x^2 u_y = 0$ with $u(x, 0) = e^x$?					
	(a) e^x	(b) $e^{(x^3+y)^{1/3}}$	(c) $e^{(x^3-3y)^{1/3}}$	(d) $(x^2y+1)e^x$		
26.	Consider the differen	tial equation:				
		$x^2y''-2x$	(x+1)y' + 2(x+1)y =	= 0		
	If a polynomial is a so	olution then the degree	of the polynomial is ea	qual to:		
	(a) 1	(b) 2	(c) 3	(d) 4		
27.	Consider continuous solutions f of the following integral equation in $[0, 1]$					
	$f^{2}(t) = 1 + 2 \int_{0}^{t} f(s)$	ds , $\forall t \in [0,1]$				

Which of the following statements is true?

(a) There is no solution.

- (b) There is exactly one solution.
- (c) There are exactly two solutions.
- (d) There are more than two solutions.
- 28. The Euler equations satisfied by the extremals of the functional

$$J(y) = \int_{0}^{5} \left[y^{2} + x^{3}y' \right] dx$$

define a solution curve in the xy-plane which is:

- (a) linear
- (b) quadratic
- (c) cubic
- (d) trigonometric
- Let $X_0 = 0$ and for $k \ge 1$, let X_k be a random variable with Binomial $\left(k, \frac{1}{2}\right)$ distribution. Let N be a 29.

Poisson random variable with mean 1. Assume that for every $k \ge 1$. X_k and N are independent and set $Y = X_N$. Given that Y = 3, what is the probability that N = 3?

- (a) $\frac{1}{6}e^{-1}$
- (b) $e^{-1/2}$
- (c) $\frac{1}{6}e^{-1/2}$ (d) $\frac{1}{48}e^{-1/2}$
- Let $X_1, X_2,...$ be i.i.d. Normal random variables with mean 2 and variance 3. Let N be a Poisson random 30. variable with mean 4 that is independent of $\{X_1, X_2, ...\}$. Let $Y = X_1 + \cdots + X_N$ if $N \ge 1$ and Y = 0 if N = 0. What is the variance of Y?
 - (a) 12
- (b) 16
- (c) 20
- (d) 28
- A sample of size n is to be drawn from a population of N households to estimate the proportion of the house-31. holds which have more than one earning member. Let 0 < n < N.

Sample-I is drawn using Simple Random Sampling without replacement.

Sample-II is drawn using Simple Random Sampling with replacement.

Let p_1 and p_2 denote the sample proportion in samples-I and II respectively. Let $\sigma_i^2 = \text{Var}(p_i)$ for i = 1, 2. Which of the following statements is true?

- (a) p_1 is an unbiased estimate of the population proportion but p_2 is not.
- (b) p_2 is an unbiased estimate of the population proportion but p_1 is not.
- (c) $\sigma_1^2 < \sigma_2^2$
- (d) $\sigma_2^2 < \sigma_1^2$
- Suppose that *X* follows a distribution with probabilities density function $f_{\theta}(x) \propto x^{\theta-1} (1-x)^{\theta-1}$; 0 < x < 1, 32. $\theta > 0$. The uniformly most powerful critical region for testing $H_0: \theta = 1$ against $H_1: \theta > 1$ based on a single observation is of the form.
 - (a) $(1-\alpha,1]$ (b) $[0,\alpha)$
- (c) $\left(\frac{1-\alpha}{2}, \frac{1+\alpha}{2}\right)$ (d) $\left[0, \frac{\alpha}{2}\right] \cup \left(1-\frac{\alpha}{2}, 1\right]$

- Consider a linear regression model of the form $y_i = \alpha + \beta x_i + \varepsilon_i$ based on the data $\{(x_i, y_i) : i = 1, 2, ..., 50\}$ 33. (here ε_i are the error terms). Assume that not all x_i are the same. Which of the following is an admissible value of the leverage of the 11th observation?
 - (a) 0
- (b) 0.01
- (c) 0.1
- (d) 1.1
- Let X be a uniform (0, 1) random variable. Suppose that given X, the random variable Y is uniform on (0, X). 34. Given X and Y, the random variable Z is uniform on (Y, 1). What is the value of E(Z)?
 - (a) 1/8

- Let (N_t^1) and (N_t^2) be two independent Poisson processes with intensities a, b respectively, with a > b. Let 35. $M_t = \max\{N_t^1, N_t^2\}$ and $X_t = \max(N_t^1 - N_t^2, 0)$. Then which of the following is **true**?
 - (a) X is a Poisson process with intensity a b.
 - (b) *X* is a birth-and-death process with birth-rate *a* and death-rate *b*.
 - (c) M is a Poisson process with intensity max (a, b).
 - (d) M is a pure birth process with birth-rate a + b.
- Consider the following Linear Programming Problem. 36.

Maximize 4x + 5y

subject to

$$2x + 3y \le 14$$

$$x + 2y \le 9$$

$$x + y \le 6$$

$$x \ge 0, y \ge 0$$

What is the optimal value of the objective function?

- (a) 24

- Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\theta, 1)$ random variables. Suppose the prior distribution of θ is $N(0, \sigma^2)$. 37.

Suppose we have squared error loss function. Let $\vec{X} = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i}$. Then, the Bayes estimator of θ is:

- (a) $\frac{X}{1+\sigma^2}$
- (b) \vec{X}
- (c) $\frac{n\vec{X}\sigma^2}{1+n\sigma^2}$ (d) $\frac{n(\vec{X}+\sigma^2)}{1+n\sigma^2}$
- Suppose that $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are independent and they have a common distribution which is 38. uniform on the triangule with vertices (0,0). $(\theta,0)$ and $(0,\theta)$, where $\theta > 0$. A sufficient statistic for θ is:
 - (a) $\max_{1 \le i \le n} X_i + \max_{1 \le i \le n} Y_i$
- (b) $\max_{1 \le i \le n} (X_i + Y_i)$

(c) $\max_{1 \le i \le n} |X_i + Y_i|$

(d) $\max \left\{ \max_{1 \le i \le n} X_i, \max_{1 \le i \le n} Y_i \right\}$

Let X be a $p \times p$ matrix valued random variable having the Wishart distribution with parameters Σ (variance 39. matrix) and m (degrees of freedom). Which of the following is necessarily true?

[$A_{i,j}$ denotes the entry in *i*-th row and *i*-th column of a matrix A].

- (a) $cX_{1,2}$ has Chi-square distribution with m-p+1 degrees of freedom for a suitable constant c.
- (b) $cX_{1,1}$ has Chi-square distribution with m-p+1 degrees of freedom for a suitable constant c.
- (c) Y = AX has the Wishart distribution with variance matrix $A \Sigma A^T$ and degrees of freedom m for any nonsingular $p \times p$ matrix A.
- (d) $k \times k$ submatrix of X also has a Wishart distribution for k < p.
- Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\theta, \sigma^2)$ random variables where σ^2 is known. Let $\vec{X} = \frac{\sum_{i=1}^{n} X_i}{n}$. Then Mini-40. mum Variance Unbiased Estimator of $e^{2\theta}$ is given by:

(a)
$$\exp\left(2\overline{X} - \frac{\sigma^2}{n}\right)$$
 (b) $\exp\left(2\overline{X} - \frac{4\sigma^2}{n}\right)$ (c) $\exp\left(2\overline{X} - \frac{2\sigma^2}{n}\right)$ (d) $\exp\left(2n\overline{X} - \frac{2\sigma^2}{n}\right)$

PART - C (Mathematical Sciences)

- 1. Which of the following functions are uniformly continuous on (0, 1)?
 - (a) $\frac{1}{r}$
- (b) $\sin \frac{1}{x}$ (c) $x \sin \frac{1}{x}$ (d) $\frac{\sin x}{x}$
- A 100×100 matrix $A = (a_{i,j})$ is such that $a_{i,j} = i$ if i + j = 101 and $a_{i,j} = 0$ otherwise. Which of the 2. following statements are true about A?
 - (a) A is similar to a diagonal matrix over \mathbb{R} .
- (b) A is not similar to a diagonal matrix over \mathbb{C} .
- (c) One of the eigenvalues of A is 10.
- (d) None of the real eigenvalues of A exceeds 51.
- Let A be a 3×3 nilpotent matrix. Which of the following statements are necessarily true? 3.
 - (a) $(I + A)^n = I$ for some n > 0 where *I* is the identity matrix.
 - (b) The column space of A is $\{0\}$.
 - (c) The eigenvalues of A are roots of 1.
 - (d) A^3 is diagonalizable.
- Let $C_0(\mathbb{R})$ be the space of all continuous functions on \mathbb{R} such that $\lim_{x \to +\infty} f(x) = 0$. Let $C_0(\mathbb{R})$ be equipped 4. with $\| \bullet \|$, the norm of uniform convergence. Let (f_n) be a sequence in $C_0(\mathbb{R})$ and $f \in C_0(\mathbb{R})$. Which of the following statements are *correct*?
 - (a) If $f_n \to f$ uniformly on compact sets then $||f_n f|| \to 0$.
 - (b) If $||f_n f|| \to 0$ then $f_n \to f$ uniformly on compact sets.
 - (c) $f_n \to f$ uniformly on compact sets if and only if $||f_n f|| \to 0$.
 - (d) Neither of the two statements " $f_n \to f$ uniformly on compact sets" and " $\|f_n f\| \to 0$ " imply the other.

- Let $\{v_1, v_2, v_3\}$ be an orthonormal basis of \mathbb{R}^3 . Let V be the 3×3 matrix whose columns are v_1, v_2, v_3 . 5. Which of the following statements are necessarily true?
 - (a) $VV^T = I$
- (b) $V^TV = I$
- (c) $V = V^T$
- (d) Determinant of V is not zero
- Let $\mathbb{N} = \{1, 2, 3, ...\}$ be the set of natural numbers. Which of the following functions from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} are 6. injective?
 - (a) $f_1(m, n) = 2^m 3^n$

(b) $f_2(m, n) = mn + m + n$

(c) $f_3(m, n) = m^2 + n^3$

- (d) $f_4(m, n) = m^2 n^3$
- Let $W_1 = \left\{ \begin{bmatrix} a & b \\ -b & 2a \end{bmatrix} : a, b \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{bmatrix} a & b \\ -b & -a \end{bmatrix} : a, b \in \mathbb{R} \right\}$ be two subspaces of $M_2(\mathbb{R})$. Which of 7.

the following statements are true?

(a) $W_1 \cap W_2 = \left\{ \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right\}$

(b) $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is a proper subset of $W_1 \cap W_2$

(c) $W_1 + W_2 = M_2(\mathbb{R})$

- (d) $W_1 + W_2$ is a proper subset of $M_2(\mathbb{R})$
- Let $f(x, y) = (u(x, y), v(x, y)) : \mathbb{R}^2 \to \mathbb{R}^2$ be a differentiable function. Let A denote the matrix of the de-8. rivative of f at the origin (0,0) with respect to the standard basis of \mathbb{R}^2 . Assume f(y,-x)=(v(x,y),-u(x, y) for all $(x, y) \in \mathbb{R}^2$. Which of the following statements are possibly true?
- (a) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (b) $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (c) $A = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$ (d) $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$
- Let $f(x) = e^x$ for $x \in \mathbb{R}$. Which of the following statements are correct? 9.
 - (a) There is a real C > 0 such that $|f(x) 1 x| \le Cx^2$ for all $x \in \mathbb{R}$.
 - (b) There is a real C > 0 such that $\left| f(x) 1 x \frac{x^2}{2} \right| \le C |x|^3$ for all $x \in [-1, 1]$.
 - (c) There is a real C > 0 such that $\left| f(x) 1 x \frac{x^2}{2} \frac{x^3}{3!} \right| \le Cx^4$ for all $x \in \mathbb{R}$.
 - (d) There is a real C > 0 such that $\left| f(x) 1 x \frac{x^2}{2} \frac{x^3}{3!} \right| \le Cx^4$ for all $x \in [-1, 1]$.
- 10. Let $f:[0,1] \to (0,1)$ be a function. Which of the following statements are False?
 - (a) If f is onto, then f is continuous.
- (b) If f is continuous then f is not onto.
- (c) If f is one-to-one, then f is continuous. (d) If f is continuous, then f is not one-to-one.

For any two non-negative integers, n, k define $f_{n,k}(x)$ on [0, 1] by: 11.

$$f_{n,k}(x) = \begin{cases} x^n \sin(\pi/2x) - x^k & ; & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$$

In which of the following cases is the function $f_{n,k}$, a function of bounded variation?

- (a) for all $n \ge 1$ and for all $k \ge 0$
- (b) for all $n \ge 1$ and k = 0
- (c) for all $n \ge 0$ and for all $k \ge 2$
- (d) for all $n \ge 2$ and for all $k \ge 0$

12. Which of the following functions f admit an inverse in an open neighbourhood of the point f(p)?

(a) For
$$p = (1, 0)$$
 and $f(x, y) = (x^3 \exp y + y - 2x, 2xy + 2x)$

(b) For
$$p = (1, \pi)$$
 and $f(r, \theta) = (r \cos \theta, r \sin \theta)$

(c) For
$$p = 0$$
 and $f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$
(d) For $p = 0$ and $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

(d) For
$$p = 0$$
 and $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

- Let $M \in \mathbb{M}_n(\mathbb{R})$ with $M \neq 0$, I_n but $M^2 = M$. Which of the following statements are true? 13.
 - (a) Null (M) is the eigenspace of M corresponding to the eigenvalue 0.
 - (b) Let $X \in Col(M)$ with $X \neq 0$. Then X is an eigenvector of M corresponding to the eigenvalue 1.
 - (c) Let $X \notin \text{Null}(M)$. Then X is an eigenvector of M corresponding to the eigenvalue 1.
 - (d) $\mathbb{R}^n = \operatorname{Col}(M) + \operatorname{Null}(M)$

Consider the identity functions f(x) = x on I := [0,1]. Let P_n be the partition that divides I into n equal 14. parts. If $U(f, P_n)$ and $L(f, P_n)$ are the upper and lower Riemann sums, respectively, and $A_n = U(f, P_n) - L(f, P_n)$, then —

(a)
$$\lim_{n\to\infty} nA_n = 0$$

(b)
$$\sum_{n=1}^{\infty} A_n$$
 is convergent

(c) A_n is strictly monotonically decreasing

(d)
$$\sum_{n=1}^{\infty} A_n A_{n+1} = 1$$

Let $\{y_1, y_2, y_3, y_4\}$ be an orthonormal basis of \mathbb{R}^4 . Which of the following are orthonormal bases? 15.

(a)
$$\{y_1 + y_2, y_1 - y_2, y_3, y_4\}$$

(b)
$$\{y_3, y_4, -y_1, y_2\}$$

(c)
$$\left\{ \frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}, y_3, y_4 \right\}$$

(d)
$$\left\{ \frac{3y_1 + 4y_2}{5}, \frac{4y_1 - 3y_2}{5}, y_3, y_4 \right\}$$

- 16. Let A be an $m \times n$ matrix, let A(1, :), A(:, 1) and A(1, 1) be the matrices obtained from A by deleting row 1 deleting column 1 and deleting both row 1 and column 1 respectively. Which of the following hold?
 - (a) $(\operatorname{rank} A) 2 \le \operatorname{rank} A(1, 1) \le \operatorname{rank} A$
 - (b) $\operatorname{rank} A(1, :) = \operatorname{rank} A(:, 1)$
 - (c) $\operatorname{rank} A = \operatorname{rank} A(1, 1) = \operatorname{rank} A(1, 1)$, then $\operatorname{rank} A = \operatorname{rank} A(1, 1)$
 - (d) $\operatorname{rank} A(1, :) + \operatorname{rank} A(:, 1) + 2 \ge 2 \operatorname{rank} A$
- 17. Let $\{x_n\}$ be a sequence of positive real numbers. Which of the following statements are true?
 - (a) If the two subsequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ converge, then the sequence $\{x_n\}$ converges.
 - (b) If $\{(-1)^n x_n\}$ converges, then the sequence $\{x_n\}$ converges.
 - (c) If $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ exists then $\{(x_n)^{1/n}\}$ is bounded.
 - (d) If the sequence $\{x_n\}$ is unbounded then every subsequence is unbounded.
- 18. Let x, y be real numbers such that $0 < y \le x$ and let n be a positive integer. Which of the following statements are true?
 - (a) $ny^{n-1}(x-y) \le x^n y^n$

(b) $nx^{n-1}(x-y) \le x^n - y^n$

(c) $ny^{n-1}(x-y) \ge x^n - y^n$

- (d) $nx^{n-1}(x-y) \ge x^n y^n$
- 19. Let $\mathbb{N} = \{1, 2, ...\}$ denote the set of possible integers. For $n \in \mathbb{N}$, let

$$A_n = \{(x, y, z) \in \mathbb{N}^3 : x^n + y^n = z^n \text{ and } z < n\}$$

- Let F(n) be the cardinality of the set A_n . Which of the following statements are true?
- (a) F(n) is always finite for $n \ge 3$.
- (b) $F(2) = \infty$

(c) F(n) = 0 for all n

- (d) F(n) is non-zero for some n > 2
- 20. Which of the following statements are true for $\alpha \in \mathbb{R}$?
 - (a) If α^3 is algebraic over $\mathbb Q$, then α is algebraic over $\mathbb Q$.
 - (b) α could be algebraic over $\mathbb{Q} \lceil \sqrt{2} \rceil$ but may not be algebraic over \mathbb{Q} .
 - (c) α need not be algebraic over any subfield of \mathbb{R} .
 - (d) There is an α which is not algebraic over $\mathbb{Q}\left[\sqrt{-1}\right]$.
- 21. For a positive integer n, let $\phi(n)$ be the Euler's ϕ -function. Which of the following statements are true for n > 3?
 - (a) $\phi(n)$ can never divide n.
 - (b) $\phi(n) \mid n \Rightarrow$ there exist integers x, y such that nx + 6y = 1
 - (c) $\phi(n) \mid n \Rightarrow n$ can have at most two distinct prime divisors.
 - (d) $\phi(n) | \phi(nk)$ for every positive integer k.

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disc. Consider the family F of all holomorphic maps $f: \mathbb{D} \to \mathbb{D}$ such that $f(0) = \frac{1}{2}$ 22.

for $f \in F$, the possible values of |f'(0)| are :

- (a) $\frac{7}{8}$
- (b) $\frac{5}{6}$ (c) $\frac{3}{4}$
- (d) 1
- Let p > 2019 be a prime number. Consider the polynomial 23.

$$f(x) = (x^2 - 3)(x^2 - 673)(x^2 - 2019)$$

How many roots can f possibly have in the finite field \mathbb{F}_p ?

- (a) 0
- (b) 2
- (c) 3
- (d) 6
- 24. Let G be the cyclic group of order 8 and $H = S_5$ be the permutation group of 5 elements. Which of the following statements are necessarily true?
 - (a) There exists no non-trivial group homomorphism from G to H.
 - (b) There exists no injective group homomorphism from G to H.
 - (c) There exists no surjective group homomorphism from G to H.
 - (d) There are more than 20 different group homomorphisms from G to H.
- Let $X = \mathbb{N} \cup \{\infty, -\infty\}$. Let τ be the topology on X consisting of subsets U of X such that either 25. $U \subset \mathbb{N}$ or $X \setminus U$ is finite. Let $A = \mathbb{N} \cup \{\infty\}$ and $B = \mathbb{N} \cup \{-\infty\}$. Which of the following subsets are compact?
 - (a) A
- (b) $X \setminus A$
- (c) $A \cup B$
- (d) $A \cap B$
- 26. For $z \in \mathbb{C}$, let $\Re z$ denotes its real part. Let f be an entire function satisfying $|f(z)| \le |z| |\Re z|$ on \mathbb{C} . Which of the following statements are true?

CAREER ENDEAVOUR

- (a) f(0) = 0
- (b) f'(0) = 0
- (c) The only entire function satisfying the given property is $f(z) \equiv 0$.
- (d) There exists a non-constant entire function satisfying the given property.
- Fix a positive real number c. Consider the locus of all points $z \in \mathbb{C}$ such that $\left| \frac{z-i}{z+i} \right| = c$. Which of the follow-27.

ing statements are true?

- (a) If c > 1, the locus is a circle centered on the imaginary axis.
- (b) If c < 1, the locus is a circle centered on the real axis.
- (c) If c = 1, the locus is a straight line parallel to the imaginary axis.
- (d) If c = 1, the locus is a straight line not passing through the origin.

- 28. Which of the following statements are true?
 - (a) Any compact topological space is metrizable.
 - (b) Any continuous image of a Hausdorff topological space is Hausdorff.
 - (c) If $f: X \to Y$ is continuous and one-to-one, and Y is Hausdorff, then X is Hausdorff.
 - (d) Intersection of two connected subsets of \mathbb{R} with the usual topology is either empty or connected.
- 29. For positive integers m and n, let gcd(m, n) denote their greatest common divisor. Let m > n be such that gcd(m, n) = 1. Which of the following statements are true?
 - (a) gcd(m-n, m+n) = 1
 - (b) gcd(m-n, m+n) can have a prime divisor.
 - (c) There exists integers x, y such that nx my = 3.
 - (d) gcd(m-n, m+n) can be an odd prime.
- Consider the set $S := \{ \exp(2\pi i\theta) : \theta \text{ is a rational number} \}$. For each $z \in S$ the set $\{z^{n!} : n \text{ is a positive } \}$ 30. integer} is:
 - (a) countable
- (b) countably infinite
- (c) uncountable
- (d) finite
- 31. Which of the following are solutions of the Laplace equation, $u_{xx} + u_{yy} = 0$ in the unit disk

$$D = \{(x, y) : x^2 + y^2 < 1\}$$
?

(a)
$$x^5 + 2x^2y^3 - y^5$$

(b)
$$x^2 + 2xy - y^2$$

(c)
$$\cos(y)e^x + \sin(x)e^y$$

(b)
$$\frac{1+x}{1+2x+x^2+y^2}$$

32. Let x and y be continuously differentiable functions on $[0, \infty)$ that satisfy the respective initial value problems (ODEs)

$$\frac{dx}{dt} + (\sin t - 1) x = \log(1 + t), \quad x(0) = 1;$$

$$\frac{dy}{dt} + (\sin t - 1) y = t, \qquad y(0) = 2.$$

Define z(t) = y(t) - x(t) for $t \ge 0$. Which of the following statements are true?

- (a) $z(1) \le 1$
- (b) z(2) > z(1) (c) z(1) > 1
- (d) $z(2) \le z(1)$
- 33. Let K(x, y) be a kernel in $[0, 1] \times [0, 1]$, defined as $K(x, y) = \sin(xy)$. The integral equation:

$$u(x) = \sin x + \int_{0}^{1} K(x, y)u(y) dy$$

- (a) is uniquely solvable and the solution is differentiable.
- (b) has more than one differentiable solution.
- (c) has no solution.
- (d) is solvable and the solution is not differentiable.

34. Consider the numerical integration formula:

$$\int_{-1}^{1} g(x) dx \approx g(\alpha) + g(-\alpha),$$

where, $\alpha = (0.2)^{1/4}$. Which of the following statements are true?

- (a) The integration formula is exact for polynomials of the form a + bx for all $a, b \in \mathbb{R}$.
- (b) The integration formula is exact for polynomials of the form $a + bx + cx^2$, for all $a, b, c \in \mathbb{R}$.
- (c) The integration formula is exact for polynomials of the form $a + bx + cx^2 + dx^3$, for all $a, b, c, d \in \mathbb{R}$.
- (d) The integration formula is exact for polynomials of the form $a + bx + cx^3 + dx^4$ for all $a, b, c, d \in \mathbb{R}$.
- 35. Consider the partial differential equation (PDE)

$$x\left(\frac{\partial u}{\partial x}\right)^{2} + y\left(\frac{\partial u}{\partial y}\right)^{2} + (x+y)\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} - u\left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) + 1 = 0$$

Which of the following statements are True?

(a) The general solution of the PDE can be expressed in the form:

$$u(x, y) = ax + by + \frac{1}{a+b}$$
, where a and b are arbitrary constants.

(b) The general solution of the PDE can be expressed in the form:

$$u(x, y) = f(ax + by) + \frac{1}{a+b}$$
, where a and b are arbitrary constants and f is an arbitrary function.

(c) The Charpit's equations are

$$\frac{dx}{p^2 + pq} = \frac{dy}{q^2 + pq} = \frac{du}{p(p^2 + pq) + q(p^2 + pq)} = \frac{dp}{0} = \frac{dq}{0}$$

(d) The Charpit's equations are:

$$\frac{dx}{2px + (x+y)q - u} = \frac{dy}{2qy + (x+y)p - u}$$

$$= \frac{du}{p(2px + (x+y)q - u) + q(2qy + (x+y)p - u)} = \frac{dp}{0} = \frac{dq}{0}$$

- Consider a body of unit mass moving under an attractive central force. At a certain radius R, the body moves 36. in a circular orbit. Which of the following are true?
 - (a) The force must be equal to $-\frac{L^2}{R^3}$, where L is the angular-momentum of the body.
 - (b) The force can be any strictly negative valued function of R.
 - (c) The force can only be of the inverse square law form.
 - (d) The force cannot be of the form -kR.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a locally Lipschitz function. Consider the system of the ODEs given by: 37.

$$\dot{x}_1 = \sin(e^{x_2}), \ \dot{x}_2 = f(x_1, x_2)$$

with initial condition $(x_1(0), x_2(0)) = (1, 1)$. Which of the following statements is true?

- (a) There is at most one local solution at time 0.
- (b) There always exists a global solution defined in $[0, \infty)$.
- (c) There might not be any solution around the time 0.
- (d) There is at least one solution around time 0.
- Let $f(x, y) = (y + x(1 x^2 y^2), -x + y(1 x^2 y^2))$ and consider the ODE $(\dot{x}, \dot{y}) = f(x, y)$ with ini-38. tial condition $(x(0), y(0)) = \left(0, \frac{1}{2}\right)$. Which of the following statements are true?
 - (a) $x^2(t) + y^2(t) \rightarrow \infty$ as $t \rightarrow \infty$
- (b) $x^2(t) + y^2(t) \rightarrow 0$ as $t \rightarrow \infty$
- (c) $x^2(t) + y^2(t)$ remains bounded as $t \to \infty$ (d) $x^2(t) + y^2(t) \to 1$ as $t \to \infty$
- Let S be the set of all continuous functions $f:[0,1] \to [0,\infty)$ that satisfy 39.

$$\int_{0}^{1} x^{2} f(x) dx = \frac{1}{2} \int_{0}^{1} x f^{2}(x) dx + \frac{1}{8}$$

Which of the following statements are true?

(a) S is an empty set

- (b) S has at most one element
- (c) S has at least one element
- (d) S has more than two elements
- Let B be the unit ball in \mathbb{R}^3 centered at origin. The Euler-Lagrange equation corresponding to the functional 40.

$$I(u) = \frac{1}{2} \int_{B} |\nabla u|^{2} dx - \frac{1}{5} \int_{B} |u|^{5} dx$$
 is

- (b) $\Delta u = -u^4$ (c) $\det(D^2 u) = u^4$ (d) $\Delta u = -|u|^3 u$

41. Let K(x, y) be a kernel in $[0, 1] \times [0, 1]$ defined as:

$$K(x, y) = \begin{cases} x(1-y) & ; & 0 \le x \le y \le 1 \\ y(1-x) & ; & 0 \le y \le x \le 1; \end{cases}$$

and K be the associated integral operator. Then $K: L^2([0,1]) \to L^2([0,1])$

(a) is positive definite

- (b) is self adjoint
- (c) has a non-zero null space
- (d) is onto

42. Consider the problem of extremising the functional $J(y) = \int_{1}^{3} y(3x - y) dx$ with boundary conditions y(1) = 1

and y(3) = 2. Which of the following statements are true?

(a) There is a unique extremal

(b)
$$y(x) = \frac{3x}{2}$$
 is an extremal

(c)
$$y(x) = \frac{x}{2} + \frac{1}{2}$$
 is an extremal

(d) There are no extremals.

60. Let *A* and *B* be two events. Which of the following are necessarily correct?

(a)
$$P(A \cup B) \leq P(A) + P(B)$$

(b)
$$P(A \cup B) \ge P(A) + P(B)$$

(c)
$$P(A \cap B) = P(A) P(B)$$

(d)
$$P(A \cap B) \ge P(A) + P(B) - 1$$

CSIR-NET – MATHEMATICAL SCIENCES NOV. 2020

(Answer Key) — PART - B (Mathematical Sciences)								
1 . (c)	2 . (b)	3 . (d)	4 . (b)	5 . (a)				
6 . (b)	7 . (c)	8. (c)	9 . (d)	10 . (b)				
11 . (a)	12 . (d)	13 . (a)	14 .(a)	15 .(c)				
16 . (b)	17 . (d)	18 . (c)	19 . (d)	20 . (d)				
21 . (b)	22 . (a)	23 .(c)	24 .(b)	25. ()				
26 . (a)	27 . (c)	28 . (b)	29.()	30 . ()				
31 . ()	32 . ()	33. ()	34.()	35 . ()				
36 . (b)	37. ()	38. ()	39 . ()	40 . ()				
(Answer Key) — PART - C (Mathematical Sciences)								
1 . (c), (d)	2 . (a), (c), (d)	3 . (d)	4 . (b)	5 . (a,b,d)				
6 . (a)	7 . (b), (d)	8. (a), (b), (d)	9 . (b), (d)	10 . (a,c,d)				
11 . (d)	12 . (a), (b)	13. (a), (b), (d)	14 .(c), (d)	15 . (b), (d)				
16. (a), (c), (d)	17 . (b), (c)	18. (a), (d)	19 . (a), (c)	20 . (a,c,d)				
21 . (c), (d)	22 . (c)	23 . (b), (d)	24 .(b), (c), (d)	25 . (a,b,c)				
26. (a), (b), (c)	27 . (a)	28 . (b), (d)	29 . (b), (c)	30 . (a), (d)				
31 . (b), (c), (d)	32 . (b), (c)	33 . (a)	34 . (a), (d)	35 . (a), (d)				
36 . (a), (b)	37 . (a), (d)	38 . (b), (c)	39 . (a), (b)	40 . (d)				
41 . (a), (b)	42 . (d)	43 . ()	44.()	45 . ()				
46 . ()	47 . ()	48. ()	49 . ()	50 . ()				
51. ()	52 . ()	53 . ()	54 .()	55 . ()				
56 . ()	57 . ()	58 . ()	59 . ()	60 . (a), (d)				

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009 North Delhi: 56-58, First Floor, Mall Road, G.T.B. Nagar (Near Metro Gate No. 3), Delhi-09, Ph: 011-41420035