CSIR-NET-(PYQ) MATHEMATICAL SCIENCE **DECEMBER-2016-II**

PART-B

1. Consider the sets of sequences

$$X = \{(x_n) : x_n \in \{0,1\}, n \in \mathbb{N}\}$$

and

 $Y = \{ (x_n) \in X : x_n = 1 \text{ for at most finitely many} \}$

Then

- (a) X is countable, Y is finite.
- (c) X is countable, Y is countable.

- (b) X is uncountable, Y is countable.
- (d) X is uncountable, Y is uncountable

(b) Ans.

- The matrix $\begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}$ is 2.
 - (a) positive definite
 - (c) negative definite.

- (b) non-negative definite but not positive definite.
- (d) neither negative definite nor positive definite

Ans. (a)

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by **3.**

$$f(x,y) = (x^2, y^2 + \sin x)$$

 $f(x, y) = (x^2, y^2 + \sin x)$ Then the derivative of f at (x, y) is the linear transformation given by

(a)
$$\begin{pmatrix} 2x & 0 \\ \cos x & 2y \end{pmatrix}$$
 (b) $\begin{pmatrix} 2x & 0 \\ 2y & \cos x \end{pmatrix}$ (c) $\begin{pmatrix} 2y & \cos x \\ 2x & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 2x & 2y \\ 0 & \cos x \end{pmatrix}$

(b)
$$\begin{pmatrix} 2x & 0 \\ 2y & \cos x \end{pmatrix}$$

(c)
$$\begin{pmatrix} 2y & \cos x \\ 2x & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 2x & 2y \\ 0 & \cos x \end{pmatrix}$$

Ans.

- A function $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by f(x, y) = xy. Let v = (1, 2) and $a = (a_1, a_2)$ be two elements of \mathbb{R}^2 . 4. The directional derivative of f in the direction of v at a is
 - (a) $a_1 + 2a_2$
- (b) $a_2 + 2a_1$
- (c) $\frac{a_2}{2} + a_1$ (d) $\frac{a_1}{2} + a_2$

Ans. **(b)**

- $\lim_{n\to\infty}\frac{1}{n^4}\sum_{i=0}^{2n-1}j^3 \text{ equals}$ 5.
 - (a) 4

(b) 16

- (c) 1
- (d) 8

Ans. (a)

6.
$$f: \mathbb{R} \to \mathbb{R}$$
 is such that $f(0) = 0$ and $\left| \frac{df}{dx}(x) \right| \le 5$ for all x . We can conclude that $f(1)$ is in

(b)
$$[-5,5]$$

(c)
$$\left(-\infty, -5\right) \cup \left(5, \infty\right)$$
 (d) $\left[-4, 4\right]$

d)
$$\left[-4,4\right]$$

(b) Ans.

Which of the following subsets of \mathbb{R}^+ is a basis of \mathbb{R}^4 ? 7.

$$B_1 = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$$

$$B_2 = \{(1,0,0,0), (1,2,0,0), (1,2,3,0), (1,2,3,4)\}$$

$$B_3 = \{(1,2,0,0), (0,0,1,1), (2,1,0,0), (-5,5,0,0)\}$$

(a)
$$B_1$$
 and B_2 but not B_3

(b) B_1 , B_2 and B_3

(d) Only B₁

Ans.

8. Let
$$D_1 = \det \begin{pmatrix} a & b & c \\ x & y & z \\ p & q & r \end{pmatrix}$$
 and $D_2 = \det \begin{pmatrix} -x & a & -p \\ y & -b & q \\ z & -c & r \end{pmatrix}$. Then

(a)
$$D_1 = D_2$$

(b)
$$D_1 = 2D_2$$

(c)
$$D_1 = -D_2$$

(d)
$$2D_1 = D_2$$

Ans.

9. Consider the matrix
$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
, where $\theta = \frac{2\pi}{31}$, Then A^{2015} equals

(c)
$$\begin{pmatrix} \cos 13\theta & \sin 13\theta \\ -\sin 13\theta & \cos 13\theta \end{pmatrix}$$

$$(d)$$
 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Ans.

10. Let J denote the matrix of order $n \times n$ with all entries 1 and let B be a $(3n) \times (3n)$ matrix given by

$$B = \begin{pmatrix} 0 & 0 & J \\ 0 & J & 0 \\ J & 0 & 0 \end{pmatrix}$$

Then the rank of B is

(b)
$$3n-1$$

Ans. **(d)**

11. Which of the following sets of functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} ?

$$S_1 = \left\{ f \mid \lim_{x \to 3} f(x) = 0 \right\}$$

$$S_2 = \left\{ g \mid \lim_{x \to 3} g(x) = 1 \right\}$$

$$S_3 = \left\{ h \mid \lim_{x \to 3} h(x) exists \right\}$$

(b) Only S₂

(c) S_1 and S_3 but not S_2

(d) All the three are vector spaces

Ans.	(c)
------	-----

- 12. Let *A* be an $n \times m$ matrix with each entry equal to +1, -1 or 0 such that every column has exactly one +1 and exactly one -1. We can conclude that
 - (a) Rank $A \le n-1$
- (b) Rank A = m
- (c) $n \le m$
- (d) $n 1 \le m$

Ans. (a)

- 13. The radius of convergence of the series $\sum_{n=1}^{\infty} z^{n^2}$ is
 - (a) 0

(b) ∞

- (c) 1
- (d) 2

Ans. (c)

14. Let C be the circle |z| = 3/2 in the complex plane that is oriented in the counter clockwise direction. The value a for which

$$\int_{C} \left(\frac{z+1}{z^2 - 3z + 2} + \frac{a}{z-1} \right) dz = 0 \text{ is}$$

(a) 1

(b) -1

- (c) 2
- (d) -2

Ans. (c)

- 15. Suppose f and g are entire functions and $g(z) \neq 0$ for all $z \in \mathbb{C}$. If $|f(z)| \leq |g(z)|$, then we conclude that
 - (a) $f(z) \neq 0$ for all $z \in \mathbb{C}$

(b) f is a constant function.

(c) f(0) = 0

(d) for some $c \in \mathbb{C}$, f(z) = Cg(z)

Ans. (d)

- 16. Let f be a holomorphic function on $0 < |z| < \epsilon, \epsilon > 0$, given by a convergent Laurent series $\sum_{n=-\infty}^{\infty} a_n z^n$. Given also that $\lim_{z \to 0} |f(z)| = \infty$, We can conclude that
 - (a) $a_{-1} \neq 0$ and $a_{-n} = 0$ for all $n \ge 2$
 - (b) $a_{-N} \neq 0$ for some $N \ge 1$ and $a_{-n} = 0$ for all n > N
 - (c) $a_{-n} = 0$ for all $n \ge 1$
 - (d) $a_{-n} \neq 0$ for all $n \ge 1$

Ans. (b)

- 17. Given a natural number n > 1 such that $(n-1)! \equiv -1 \pmod{n}$. We can conclude that
 - (a) $n = p^k$ where is prime, k > 1.
 - (b) n = pq where p and q are distinct primes
 - (c) n = pqr where p,q, r are distinct primes
 - (d) n = p where p is a prime.

Ans. (d)

- Let S_n denote the permutation group on n symbols and A_n be the subgroup of even permutations. Which of the 18. following is true? (a) There exists a finite group which is not a subgroup of S_n for any $n \ge 1$ (b) Every finite group is a subgroup of A_n for some $n \ge 1$ (c) Every finite group is a quotient of A_n for some $n \ge 1$ (d) No finite abelian group is a quotient of S_n for n > 3**(b)** Ans. What is the number of non-singular 3×3 matrices over \mathbb{F}_2 , the finite field with two elements? **19.**
- (c) 2^3 (d) 3^2 (a) 168 (b) 384
- 20. Let G be an open set in \mathbb{R}^n . Two points $x, y \in G$ are said to be equivalent if they can be joined by a continuous path completely lying inside G. Number of equivalence classes is
 - (a) only one (b) at most finite. (c) at most countable (d) can be finite, countable or uncountable
- Ans. Let (x(t), y(t)) satisfy the system of ODEs
 - $\frac{dx}{dt} = -x + ty$
 - $\frac{dy}{dt} = tx y$
 - If $(x_1(t), y_1(t))$ and $(x_2(t), y_2(t))$ are two solutions and
 - $\Phi(t) = x_1(t) y_2(t) x_2(t) y_1(t)$ then $\frac{d\Phi}{dt}$ is equal to
 - (a) -2Φ

- (b) 2Φ
- (c) _Ф
- (d) Φ

(a) Ans.

Ans.

21.

(a)

The boundary value problem $x^2y'' - 2xy' + 2y = 0$, subject to the boundary conditions 22.

 $y(1) + \alpha y'(1) = 1$, $y(2) + \beta y'(2) = 2$, has a unique solution if

- (a) $\alpha = -1, \beta = 2$ (b) $\alpha = -1, \beta = -2$ (c) $\alpha = -2, \beta = 2$ (d) $\alpha = -3, \beta = \frac{2}{3}$

Ans. (a)

- The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is 23.
 - (a) hyperbolic for x > 0, y < 0

(b) elliptic for x > 0, y < 0

(c) hyperbolic for x > 0, y > 0

(d) elliptic for x < 0, y > 0

Ans. (a)

Let u(x,t) satisfy the initial boundary value problem 24.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; x \in (0,1), t > 0$$

$$u(x,0) = \sin(\pi x); x \in [0,1]$$

$$u(0,t) = u(1,t) = 0$$
, $t > 0$, Then for $x \in (0,1)$, $u\left(x,\frac{1}{\pi^2}\right)$ is equal to

- (a) $e \sin(\pi x)$
- (b) $e^{-1} \sin(\pi x)$
- (c) $\sin(\pi x)$
- (d) $\sin(\pi^{-1}x)$

Ans. **(b)**

25. The values of α and β , such that

$$x_{n+1} = \alpha x_n \left(3 - \frac{x_n^2}{a} \right) + \beta x_n \left(1 + \frac{a}{x_n^2} \right)$$

has $3^{\rm rd}$ order convergence to \sqrt{a} , are

(a)
$$\alpha = \frac{3}{8}, \beta = \frac{1}{8}$$
 (b) $\alpha = \frac{1}{8}, \beta = \frac{3}{8}$ (c) $\alpha = \frac{2}{8}, \beta = \frac{2}{8}$ (d) $\alpha = \frac{1}{4}, \beta = \frac{3}{4}$

(b)
$$\alpha = \frac{1}{8}, \beta = \frac{3}{8}$$

(c)
$$\alpha = \frac{2}{8}, \beta = \frac{2}{8}$$

(d)
$$\alpha = \frac{1}{4}, \beta = \frac{3}{4}$$

Ans.

If $J[y] = \int_{1}^{2} (y'^2 + 2yy' + y^2) dx$, y(1) = 1 and y(2) is arbitrary then the extremal is **26.**

(a)
$$e^{x-1}$$

(b)
$$e^{x+1}$$

(c)
$$\rho^{1-x}$$

(d)
$$\rho^{-x-1}$$

Ans. (c)

Let ϕ satisfy $\phi(x) = f(x) + \int \sin(x-t)\phi(t)dt$. Then ϕ is given by 27.

(a)
$$\phi(x) = f(x) + \int_{0}^{x} (x-t)f(t)dt$$
 (b) $\phi(x) = f(x) - \int_{0}^{x} (x-t)f(t)dt$

(c)
$$\phi(x) = f(x) - \int_{0}^{x} \cos(x-t) f(t) dt$$

(d)
$$\phi(x) = f(x) - \int_{0}^{x} \sin(x-t) f(t) dt$$

Ans.

28. A bead slides without friction on a frictionless wire in the shape of a cycloid with equation $x = a(\theta - \sin \theta), y = a(1 + \cos \theta), 0 \le \theta \le 2\pi$. Then the Lagrangian function is

(a)
$$ma^2(1+\cos\theta)\theta^2 - mga(1+\cos\theta)$$

(b)
$$ma^2(1-\cos\theta)\theta^2 - mga(1+\cos\theta)$$

(c)
$$ma^2(1-\cos\theta)\theta^2 + mga(1+\cos\theta)$$

(d)
$$ma^2(1+\cos\theta)\theta^2 - mga(1-\cos\theta)$$

Ans. **(b)**

29. There are two boxes. Box 1 contains 2 red balls and 4 green balls. Box 2 contains 4 red balls and 2 green balls. A box is selected at random and a ball is chosen randomly from the selected box. If the ball turns out to be red, what is the probability that Box 1 had been selected?

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{6}$$

Ans. (b)

30. For any two events A and B, which of the following relations always holds?

(a)
$$P^2(A \cap B^C) + P^2(A \cap B) + P^2(A^C) \ge \frac{1}{3}$$

(b)
$$P^2(A \cap B^C) + P^2(A \cap B) + P^2(A^C) = \frac{1}{3}$$

(c)
$$P^2(A \cap B^C) + P^2(A \cap B) + P^2(A^C) = 1$$

(d)
$$P^2(A \cap B^C) + P^2(A \cap B) + P^2(A^C) \le \frac{1}{3}$$

Ans. (a)

31. Suppose customers arrive in a shop according to a Poisson process with rate 4 per hour. The shop opens at 10:00 am. If it is given that the second customer arrives at 10:40 am, what is the probability that no customer arrived before 10:30 am?

(a)
$$\frac{1}{4}$$

(b)
$$e^{-2}$$

(c)
$$\frac{1}{2}$$

(d)
$$e^{-1/2}$$

Ans. (a

32. Suppose $X_1, X_2, ..., X_n$ is a random sample from a distribution with probability density function

$$f(x) = 3x^2 I_{(0,1)}(x)$$
, where $I_{(0,1)}(z) = \begin{cases} 1 & \text{if } z \in (0,1) \\ 0 & \text{otherwise} \end{cases}$.

What is the probability density function g(y) of $Y = \min\{X_1, X_2, ..., X_n\}$?

(a)
$$g(y) = 3ny^{3n-1}I_{(0,1)}(y)$$

(b)
$$g(y) = 1 - (1 - y^3)^n I_{(0,1)}(y)$$

(c)
$$g(y) = (1-y^3)^n I_{(0,1)}(y)$$
 REER ENDE (d) $g(y) = 3ny^2 (1-y^3)^{n-1} I_{(0,1)}(y)$

Ans. (d)

33. $X_1, X_2, ..., X_n$ are independent and identically distributed $N(\theta, 1)$ random variables, where θ takes only integer values i.e. $\theta \in \{..., -2, -1, 0, 1, 2, ...\}$.

Which of the following is the maximum likelihood estimator of θ ?

(a)
$$\bar{X}$$

(b) Integer closest to
$$\bar{\chi}$$

(c) Integer part of
$$\overline{X}$$
 (Largest integer $\leq \overline{X}$)

(d) median of
$$(X_1, X_2, ..., X_n)$$

Ans. (b)

34. ?

Ans. (a)

35. ?

Ans. (a)

? 36.

Ans. (c)

37. ?

Ans. **(c)**

? 38.

(b) Ans.

? **39.**

Ans. **(d)**

? 40.

Ans. (a)

PART-C

- Let A be a n×n non-singular matrix with real entries. Let $B = A^T$ denote the transpose of A. Which of the 41. following matrices are positive definite?
 - (a) A+B

- (b) $A^{-1} + B^{-1}$
- (c) AB
- (d) ABA

Ans. (c)

- 42. Let $s \in (0,1)$. Then decide which of the following are true.
 - (a) $\forall m \in \mathbb{N}, \ \ni n \in \mathbb{N} \text{ s.t. } s > m/n$

(b) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N} s.t \quad s < m/n$

(c) $\forall m \in \mathbb{N}, \ \ni n \in \mathbb{N}$ s.t s = m/n

(d) $\forall m \in \mathbb{N}, \ \ni n \in \mathbb{N}$ s.t s = m + n

Ans. (a, b)

- Let $f_n(x) = (-x)^n$, $x \in [0,1]$. Then decide which of the following are true. 43.
 - (a) there exists a pointwise convergent subsequence of f_{ij}
 - (b) f_n has no pointwise convergent subsequence
 - (c) f_n converges pointwise everywhere
 - (d) f_n has exactly one pointwise convergent subsequence

Ans.

Which of the following are true for the function 44.

$$f(x) = \sin(x)\sin\left(\frac{1}{x}\right), x \in (0,1)$$
?

(a)
$$\lim_{x\to 0} f(x) = \overline{\lim}_{x\to 0} f(x)$$

(b)
$$\lim_{x\to 0} f(x) < \overline{\lim}_{x\to 0} f(x)$$

(c)
$$\lim_{x\to 0} f(x) = 1$$

(d)
$$\overline{\lim}_{x\to 0} f(x) = 0$$

Ans. (a, d)

- 45. Find out which of the following series converge uniformly for $x \in (-\pi, \pi)$
 - (a) $\sum_{n=1}^{\infty} \frac{e^{-n|x|}}{n^3}$

- (b) $\sum_{n=1}^{\infty} \frac{\sin(xn)}{n^5}$ (c) $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$ (d) $\sum_{n=1}^{\infty} \frac{1}{\left((x+\pi)n\right)^2}$

(a, b, c)Ans.

46. Decide which of the following functions are uniformly continuous on (0,1).

(a)
$$f(x) = e^x$$

(b)
$$f(x) = x$$

(b)
$$f(x) = x$$
 (c) $f(x) = \tan\left(\frac{\pi x}{2}\right)$ (d) $f(x) = \sin(x)$

Ans. (a, b, d)

Let $\chi_A(x)$ denote the function which is 1 if $x \in A$ and 0 otherwise. Consider **47.**

$$f(x) = \sum_{n=1}^{200} \frac{1}{n^6} \chi_{\left[0, \frac{n}{200}\right]}(x), x \in [0, 1]$$

Then f(x) is

(a) Riemann integrable on [0, 1]

(b) Lebesgue integrable on [0, 1]

(c) is a continuous function on [0, 1]

(d) is a monotone function on [0, 1]

(a, b, d)Ans.

48. A function f(x, y) on \mathbb{R}^2 has the following partial derivatives

$$\frac{\partial f}{\partial x}(x, y) = x^2, \frac{\partial f}{\partial y}(x, y) = y^2$$

- (a) f has directional derivatives in all directions everywhere.
- (b) f has a derivative at all points.
- (c) f has directional derivative only along the direction (1,1) everywhere.
- (d) f does not have directional derivatives in any direction everywhere

Ans. (a, b)

Let d_1 , d_2 be the following metrics on \mathbb{R}^n . **49.**

$$d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|, d_2(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{1/2}$$

Then decide which of the following is a metric on \mathbb{R}^n .

(a)
$$d(x, y) = \frac{d_1(x, y) + d_2(x, y)}{1 + d_1(x, y) + d_2(x, y)}$$

(b)
$$d(x, y) = d_1(x, y) - d_2(x, y)$$

(c)
$$d(x, y) = d_1(x, y) + d_2(x, y)$$

(d)
$$d(x, y) = e^{\pi} d_1(x, y) + e^{-\pi} d_2(x, y)$$

(a, c, d) Ans.

Let A be the following subset of \mathbb{R}^2 . **50.**

$$A = \left\{ (x, y) : (x+1)^2 + y^2 \le 1 \right\} \cup \left\{ (x, y) : y = x \sin \frac{1}{x}, x > 0 \right\}$$

Then

(a) A is connected

(b) A is compact

(c) A is path connected

(d) A is bounded

(a, c) Ans.

51. Le

$$\ell^{\infty} = \left\{ \underline{a} = \left(a_{k} \right)_{k \ge 1} : a_{k} \in \mathbb{C}, \sup_{k} \left| a_{k} \right| = \left\| \underline{a} \right\| < \infty \right\}$$

$$\ell^{2} = \left\{ \underline{a} = \left(a_{k} \right)_{k \ge 1} : a_{k} \in \mathbb{C} \left(\Sigma \left| a_{k} \right|^{2} \right)^{1/2} = \left\| \underline{a} \right\|_{2} < \infty \right\}$$

$$T:\ell^{\infty}\to\ell^2$$
 as

Define a map

$$T\underline{a} = \left\{ a_1, \frac{a_2}{2}, \frac{a_3}{3}, \dots \right\}$$

Which of the following statements is true?

(a) T is a continuous linear map

(b) T maps ℓ^{∞} onto ℓ^{2}

(c) T^{-1} exists and is continuous

(d) T is uniformly continuous

Ans. (a, d)

- **52.** Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n \times n$ matrix such that a_{ij} is an integer for all i.j, Let AB = I with $B = \begin{bmatrix} b_{ij} \end{bmatrix}$ (where I is the identity matrix). For a square matrix C, det C denotes its determinant. Which of the following statements is true?
 - (a) If $\det A = 1$ then $\det B = 1$
 - (b) A sufficient condition for each b_{ij} to be an integer is that det A is an integer
 - (b) B is always an integer matrix
 - (d) A necessary condition for each b_{ij} to be an integer is det $A \in \{-1, +1\}$

Ans. (a, d)

- 53. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and let α_n and β_b denote the two eigenvalues of A^n such that $|\alpha_n| \ge |\beta_n|$. Then
 - (a) $a_n \to \infty$ as $n \to \infty$

(c) $\beta_n \to 0$ as $n \to \infty$

(c) β_n is positive if *n* is even.

(d) β_n is negative if n is odd

Ans. (a, b, c, d)

- **54.** Let M_n denote the vector space of all $n \times n$ real matrices. Among the following subsets of M_n , decide which are linear subspaces.
 - (a) $V_1 = \{ A \in M_n : A \text{ is nonsingular} \}$
 - (b) $V_2 = \{ A \in M_n : \det(A) = 0 \}$
 - (c) $V_3 = \{ A \in M_n : \text{trace}(A) = 0 \}$
 - (d) $V_4 = \{BA : A \in M_n\}$ where B is some fixed matrix in M_n

Ans. (c, d)

- 55. If P are Q invertible matrices such that PQ = -QP, then we can conclude that
 - (a) Tr(P) = Tr(Q) = 0

(b) Tr(P) = Tr(Q) = 1

(c) Tr(P) = -Tr(Q)

(c) $Tr(P) \neq Tr(Q)$

Ans. (a, c)

- Let *n* be an odd number ≥ 7 . Let $A = [a_{ij}]$ be an $n \times n$ matrix with $a_{i,i+1} = 1$ for all i = 1, 2, ..., n-1 and **56.** $a_{n,1} = 1$. Let $a_{ij} = 0$ for all the other pairs (i,j). Then we can conclude that
 - (a) A has 1 as an eigenvalue.
 - (b) A has -1 as an eigenvalue.
 - (c) A has at least one eigenvalue with multiplicity ≥ 2 .
 - (d) A has no real eigenvalues
- (a) Ans.
- Let W_1 , W_2 , W_3 be three distinct subspaces of \mathbb{R}^{10} such that each W_i has dimension 9. Let $W = W_1 \cap W_2 \cap W_3$. 57. Then we can conclude that
 - (a) W may not be a subspace of \mathbb{R}^{10}

(b) $\dim W \leq 8$

(c) $\dim W \ge 7$

(d) $\dim W \leq 3$

Ans. (b, c)

- **58.** Let A be a real symmetric matrix. Then we can conclude that
 - (a) A does not have 0 as an eigenvalue
- (b) All eigenvalues of A are real
- (c) If A^{-1} exists, then A^{-1} is real and symmetric
- (d) A has at least one positive eigenvalue

(b, c)Ans.

- Let f(z) be the meromorphic function given by $\frac{z}{(1-e^z)\sin z}$. Then **59.**
 - (a) z = 0 is a pole of order 2.

- (b) for every $k \in \mathbb{Z}$, $z = 2\pi i k$ is a simple pole.
- (c) for every $k \in \mathbb{Z} \setminus \{0\}$, $z = k\pi$ is a simple pole (d) $z = \pi + 2\pi i$ is a pole

Ans. (b, c)

- Consider the polynomial $P(z) = \sum_{i=1}^{N} a_n z^n$, $1 \le N < \infty$, $a_n \in \mathbb{R} \setminus \{0\}$. Then with $\mathbb{D} = \{w \in \mathbb{C} : |w| < 1\}$ **60.**
 - (a) $P(\mathbb{D}) \subset \mathbb{R}$
- (b) $P(\mathbb{D})$ is open (c) $P(\mathbb{D})$ is closed (d) $P(\mathbb{D})$ is bounded

(**b**, **d**) Ans.

- Consider the polynomial $P(z) = \left(\sum_{n=0}^{5} a_n z^n\right) \left(\sum_{n=0}^{9} b_n z^n\right)$ where $a_n, b_n \in \mathbb{R} \ \forall n, a_5 \neq 0, b_9 \neq 0$. Then counting 61. roots with multiplicity we can conclude that P(z) has
 - (a) at least two real roots

(b) 14 complex roots

(c) no real roots

(d) 12 complex roots

(a, b) or (a, b, d)Ans.

62. Let \mathbb{D} be the open unit disc in \mathbb{C} . Let $g:\mathbb{D}\to\mathbb{D}$ be holomorphic, g(0)=0, and

let.
$$h(z) = \begin{cases} g(z)/z, & z \in \mathbb{D}, z \neq 0 \\ g'(0), & z = 0 \end{cases}$$

Which of the following statements are true?

(a) h is holomorphic in \mathbb{D} .

(b) $h(\mathbb{D}) \subseteq \overline{\mathbb{D}}$

(c) |g'(0)| > 1

(d) $|g(1/2)| \le 1/2$

(a, b, d) Ans.

63. Consider the following subsets of the group of 2×2 non-singular matrices over \mathbb{R} :

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R}, ad = 1 \right\}$$

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}$$

Which of the following statements are correct?

- (a) G forms a group under matrix multiplication.
- (b) H is a normal subgroup of G.
- (c) The quotient group G/H is well-defined and is Abelian.
- (d) The quotient group G/H is well defined and is isomorphic to the group of 2×2 diagonal matrices (over \mathbb{R}) with determinant 1

Ans. (a, b, c, d)

- **64.** Let \mathbb{C} be the field of complex numbers and \mathbb{C}^* be the group of non zero complex numbers under multiplication. Then which of the following are true?
 - (a) \mathbb{C}^* is cyclic

- (b) Every finite subgroup of \mathbb{C}^* is cyclic
- (c) \mathbb{C}^* has finitely many finite subgroups
- (d) Every proper subgroup of \mathbb{C}^* is cyclic

Ans. (b)

- **65.** Let R be a finite non-zero commutative ring with unity. Then which of the following statements are necessarily true?
 - (a) Any non-zero element of R is either a unit or a zero divisor.
 - (b) There may exist a non-zero element of R which is neither a unit nor a zero divisor.
 - (c) Every prime ideal of R is maximal.
 - (d) If R has no zero divisors then order of any additive subgroup of R is a prime power.

Ans. (a,c,d)

- **66.** Which of the following statements are true?
 - (a) $\mathbb{Z}[x]$ is a principal ideal domain.
 - (b) $\mathbb{Z}[x, y]/\langle y+1\rangle$ is a unique factorization domain.
 - (c) If is a principal ideal domain and p is a non-zero prime ideal, then R/p has finitely many prime ideals
 - (d) If R is a principal ideal domain, then any subring of R containing 1 is again a principal ideal domain

Ans. (b, c)

67. Let R be a commutative ring with unity and R[x] be the polynomial ring in one variable. For a non zero $f = \sum_{n=0}^{N} a_n x^n$, define $\omega(f)$ to be the smallest n such that $a_n \neq 0$. Also $\omega(0) = +\infty$.

Then which of the following statements is/are true?

(a)
$$\omega(f+g) \ge \min(\omega(f), \omega(g))$$

(b)
$$\omega(fg) \ge \omega(f) + \omega(g)$$

(c)
$$\omega(f+g) = \min(\omega(f), \omega(g))$$
 if $\omega(f) \neq \omega(g)$

(d)
$$\omega(fg) = \omega(f) + \omega(g)$$
 if R is an integral domain

Ans. (a, b, c, d)

- **68.** Let \mathbb{F}_2 be the finite field of order 2. Then which of the following statements are true?
 - (a) $\mathbb{F}_2[x]$ has only finitely many irreducible elements.
 - (b) $\mathbb{F}_{2}[x]$ has exactly one irreducible polynomial of degree 2.
 - (c) $\mathbb{F}_2[x]/\langle x^2+1\rangle$ is a finite dimensional vector space over \mathbb{F}_2 .
 - (d) Any irreducible polynomial in $\mathbb{F}_2[x]$ of degree 5 has distinct roots in any algebraic closure of \mathbb{F}_2

Ans. (b, c, d)

- **69.** Let (X,d) be a metric space. Then
 - (a) An arbitrary open set G in X is a countable union of closed sets.
 - (b) An arbitrary open set G in X cannot be countable union of closed sets if X is connected.
 - (c) An arbitrary open set G in X is a countable union of closed sets only if X is countable.
 - (d) An arbitrary open set G in X is a countable union of closed sets only if X is locally compact

Ans. (a)

70. Let
$$S = \{x, y \in \mathbb{R}^2 \mid -1 \le x \le 1 \text{ and } -1 \le y \le 1\}$$

Let $T = S \setminus (0,0)$, the set obtained by removing the origin from S.

Let f be a continuous function from T to $\mathbb R$. Choose all correct options.

- (a) Image of f must be connected.
- (b) Image of f must be compact.
- (c) Any such continuous function f can be extended to a continuous function from S to \mathbb{R} .
- (d) If f can be extended to a continuous function from S to \mathbb{R} then the image of f is bounded

Ans. (a, d)

71. Let $x:[0,3\pi] \to \mathbb{R}$ be a nonzero solution of the ODE

$$x''(t) + e^{t^2}x(t) = 0$$
, for $t \in [0, 3\pi]$.

Then the cardinality of the set $\{t \in [0,3\pi] : x(t) = 0\}$ is

- (a) equal to 1
- (c) equal to 2

- (b) greater than or equal to 2
 - (d) greater than or equal to 3

Ans. (b, d)

72. Consider the initial value problem

$$y'(t) = f(y(t)), \quad y(0) = a \in \mathbb{R} \text{ where } f : \mathbb{R} \to \mathbb{R}.$$

Which of the following statements are necessarily true?

- (a) There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$ such that the above problem does not have a solution in any neighbourhood of 0.
- (b) The problem has a unique solution for every $a \in \mathbb{R}$ when f is Lipschitz continuous.
- (c) When f is twice continuously differentiable, the maximal interval of existence for the above initial value problem is \mathbb{R} .
- (d) The maximal interval of existence for the above problem is \mathbb{R} when f is bounded and continuously differentiable

Ans. (b, d)

Let (x(t), y(t)) satisfy for t > 0**73.**

$$\frac{dx}{dt} = -x + y, \frac{dy}{dt} = -y, \quad x(0) = y(0) = 1$$

Then x(t) is equal to

(a)
$$e^{-t} + t \quad y(t)$$

(b)
$$y(t)$$

(c)
$$e^{-t}(1+t)$$
 (d) $-y(t)$

(d)
$$-y(t)$$

(a, c) Ans.

74. Consider the wave equation for u(x,t)

$$\frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2} u}{\partial x^{2}} = 0, \quad (x,t) \in \mathbb{R} \times (0,\infty)$$

$$u(x,0) = f(x), \quad x \in \mathbb{R}$$

$$\frac{\partial u}{\partial t}(x,0) = g(x), \quad x \in \mathbb{R}$$

Let u_i be the solution of the above problem with $f = f_i$ and $g = g_i$ for i = 1, 2, where $f_i : \mathbb{R} \to \mathbb{R}$ and $g_i: \mathbb{R} \to \mathbb{R}$ are given C^2 functions satisfying $f_1(x) = f_2(x)$ and $g_1(x) = g_2(x)$, for every $x \in [-1,1]$. Which of the following statements are necessarily true

(a)
$$u_1(0,1) = u_2(0,1)$$

(b)
$$u_1(1,1) = u_2(1,1)$$

(c)
$$u_1\left(\frac{1}{2}, \frac{1}{2}\right) = u_2\left(\frac{1}{2}, \frac{1}{2}\right)$$

(d)
$$u_1(0,2) = u_2(0,2)$$

Ans. (a, c)

Let $u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be a C^2 function satisfying $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, for all $(x,y) \neq (0,0)$. Suppose u is of **75.** the form $u(x, y) = f(\sqrt{x^2 + y^2})$, where $f:(0, \infty) \to \mathbb{R}$, is a nonconstant function, then

(a)
$$\lim_{x^2+y^2\to 0} |u(x,y)| = \infty$$

(b)
$$\lim_{x^2+y^2\to 0} |u(x,y)| = 0$$

(c)
$$\lim_{x^2+y^2\to\infty} |u(x,y)| = \infty$$

(d)
$$\lim_{x^2+y^2\to\infty} |u(x,y)| = 0$$

Ans.

76. The Cauchy problem

$$y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} = 0$$

$$u = g \text{ on } \Gamma$$

has a unique solution in a neighbourhood of Γ for every differentiable function $g:\Gamma\to\mathbb{R}$ if

(a)
$$\Gamma = \{(x,0): x > 0\}$$

(b)
$$\Gamma = \{(x, y) : x^2 + y^2 = 1\}$$

(c)
$$\Gamma = \{(x, y) : x + y = 1, x > 1\}$$

(d)
$$\Gamma = \{(x, y) : y = x^2, x > 0\}$$

(a, c, d)Ans.

The order of linear multi step method $u_{j+1} = (1-a)u'_j + au_{j-1} + \frac{h}{4}\{(a+3)u'_{j+1} + 3a + 1uj - 1' \text{ for solving } \}$ 77. u' = f(x, u) is

(a)
$$2 \text{ if } a = -1$$

(b)
$$2 \text{ if } a = -2$$
 (c) $3 \text{ if } a = -1$ (d) $3 \text{ if } a = -2$

(c) 3 if
$$a = -1$$

d)
$$3 \text{ if } a = -2$$

Ans. (b, c)

The functional $J[y] = \int_{0}^{1} (y'^2 + x^2) dx$ where y(0) = -1 and y(1) = 1 on y = 2x - 1, has **78.**

(a) weak minimum

(b) weak maximum

(c) strong minimum

(d) strong maximum

Ans. (a, c) or (c)

79. Let y(x) be a piecewise continuously differentiable function on [0,4]. Then the functional

$$J[y] = \int_{0}^{4} (y'-1)^{2} (y'+1)^{2} dx \text{ attains minimum if } y = y(x) \text{ is}$$

(a)
$$y = \frac{x}{2}$$
 $0 \le x \le 4$

(b)
$$y = \begin{cases} -x & 0 \le x \le 1 \\ x - 2 & 1 \le x \le 4 \end{cases}$$

(c)
$$y = \begin{cases} 2x & 0 \le x \le 2 \\ -x + 6 & 2 \le x \le 4 \end{cases}$$

(d)
$$y = \begin{cases} x & 0 \le x \le 3 \\ -x + 6 & 3 \le x \le 4 \end{cases}$$

Ans. (**b**, **d**)

Which of the following are the characteristic numbers and the corresponding eigenfunctions for the Fredholm 80. homogeneous equation whose kernel is

$$K(x,t) = \begin{cases} (x+1)t, & 0 \le x \le t \\ (t+1)x, & t \le x \le 1 \end{cases}$$
?

- (a) $1, e^x$ (b) $-\pi^2, \pi \sin \pi x + \cos \pi x$ (c) $-4\pi^2, \pi \sin \pi x + \pi \cos 2\pi x$ (d) $-\pi^2, \pi \cos \pi x + \sin \pi x$

Ans. (a, d)

The integral equation $\phi(x) - \frac{2}{\pi} \int_{0}^{\pi} \cos(x+t) \phi(t) dt = f(x)$ has infinitely many solutions if 81.

- (a) $f(x) = \cos x$
- (b) $f(x) = \cos 3x$ (c) $f(x) = \sin x$ (d) $f(x) = \sin 3x$

Ans. (b, c, d)

82. Which of the following are canonical transformations? (Where q,p represent generalized coordinate and generalised momentum respectively)

(a) $P = \log \sin p$, $Q = q \tan p$

- (b) $P = qp^2, Q = \frac{1}{p}$
- (c) $P = q \cot p$, $Q = \log \left(\frac{1}{a} \sin p \right)$
- (d) $P = q^2 \sin 2p$, $Q = q^2 \cos 2p$

(a, b, c)Ans.