CSIR-NET-(P YQ) MATHEMATICAL SCIENCE JUNE-2014-I

SECTION-B

21.	Let A be a 5×5 matrix with real entries such that the sum of the entries in each row of A is 1. Then the sum of
	all the entries in A ³ is

(a) 3

(b) 15

- (c) 5
- (d) 125

(c) Ans.

Given the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$, the matrix A is defined to be the one whose *i*-th column is the 22.

 $\sigma(i)$ -th column of the identity matrix I. Which of the following is correct?

- (a) $A = A^{-2}$
- (b) $A = A^{-4}$
- (c) $A = A^{-5}$ (d) $A = A^{-1}$

Ans.

23. Let J denote a 101×101 matrix with all the entries equal to 1 and let I denote the identity matrix of order 101. then the determinant of J-I is

(a) 101

- (b) 1
- (c) 0
- (d) 100

Ans. **(d)**

Let $A \subset \mathbb{R}$ and $f: A \to \mathbb{R}$ be given by $f(x) = x^2$, then f is uniformly continuous if 24.

- (a) A is a bounded subset of \mathbb{R}
- (b) A is a dense subset of \mathbb{R}
- (c) A is an unbounded and connected subset of \mathbb{R}
- (d) A is an unbounded and open subset of \mathbb{R}

Ans.

25. Let α ,p be real numbers and $\alpha > 1$

(a) If p > 1 then $\int_{-\infty}^{\infty} \frac{1}{|x|^{p\alpha}} dx < \infty$

(b) If $p > \frac{1}{\alpha}$ then $\int_{-\infty}^{\infty} \frac{1}{|x|^{p^{\alpha}}} dx < \infty$

(c) If $p < \frac{1}{\alpha}$ then $\int_{-\infty}^{\infty} \frac{1}{|x|^{p\alpha}} dx < \infty$

(d) For any $p \in \mathbb{R}$ we have $\int_{-\infty}^{\infty} \frac{1}{|x|^{p\alpha}} dx = \infty$

Ans. **(d)**

Let $f: X \to Y$ be function from a metric space X to another metric space Y. For any Cauchy sequence $\{x_n\}$ **26.** in X,

- (a) If f is continuous then $\{f(x_n)\}$ is a Cauchy sequence in Y.
- (b) If $\{f(x_n)\}$ is Cauchy then $\{f(x_n)\}$ is always convergent in **Y**
- (c) If $\{f(x_n)\}$ is Cauchy in Y then f is continuous
- (d) $\{x_n\}$ is always convergent in X.

Ans. (c)

27. Le $M_{m \times n}(\mathbb{R})$ be the set of all m×n matrices with real entries. Which of the following statements is correct?

- (a) There exists $A \in M_{2\times 5}(\mathbb{R})$ such that the dimension of the null space of A is 2
- (b) There exists $A \in M_{2\times 5}(\mathbb{R})$ such that the dimension of the null space of A is 0
- (c) There exists $A \in M_{2\times 5}(\mathbb{R})$ and $B \in M_{5\times 2}(\mathbb{R})$ such that AB is the 2×2 identity matrix
- (d) There exists $A \in M_{2\times 5}(\mathbb{R})$ whose null space is $\{(x_1, x_2, x_3, x_5) \in \mathbb{R}^5 : x_1 = x_2, x_3 = x_4 = x_5\}$

Ans.

28.
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \dots + \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}} \right)$$
 equals

(a) $\sqrt{2}$

- (b) $\frac{1}{\sqrt{2}}$
- (c) $\sqrt{2} + 1$ (d) $\frac{1}{\sqrt{2} + 1}$

Ans. **(b)**

29. Consider the following sets of functions on \mathbb{R}

W = The set of constant functions on \mathbb{R}

X =The set of polynomial functions on \mathbb{R}

Y =The set of continuous functions on \mathbb{R}

Z = The set of all functions on R. Which of these sets has the same cardinality as that of \mathbb{R}

(a) Only W.

(b) Only W and X

(c) Only W, X and Z

(d) All of W, X, Y and Z

(*) Ans.

Let p(x) be a polynomial in the real variable x of degree 5. Then $\lim_{n\to\infty}\frac{p(n)}{2^n}$ is **30.**

(a) 5

CABLER ENDERONIR

 $(d) \infty$

(c) Ans.

For a continuous function $f: \mathbb{R} \to \mathbb{R}$, let $Z(f) = \{x \in \mathbb{R} : f(x) = 0\}$. Then Z(f) is always 31.

- (a) compact
- (b) open
- (c) connected
- (d) closed

Ans. **(d)**

32. For the matrix A as given below, which of them satisfy $A^6 = I$

(a)
$$A = \begin{pmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} & 0 \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\pi}{3} & \sin\frac{\pi}{3} \\ 0 & -\sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} \cos\frac{\pi}{6} & 0 & \sin\frac{\pi}{6} \\ 0 & 1 & 0 \\ -\sin\frac{\pi}{6} & 0 & \cos\frac{\pi}{6} \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} & 0 \\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

					3		
Ans.	(b)						
33.	If <i>n</i> is a positive integer such that the sum of all positive integers <i>a</i> satisfying $1 \le a \le n$ and GCD (a,n) =1 is equal to 240 <i>n</i> , then the number of summands, namely, $\varphi(n)$, is						
	(a) 120	(b) 124	(c) 240	(d) 480			
Ans.	(d)						
34.	The total number of non-isomorphic groups of order 122 is						
	(a) 2	(b) 1	(c) 61	(d) 4			
Ans.	(a)						
35.	An ice cream shop sells ice creams in five possible flavours: Vanilla, Chocolate, Strawberry, Mango and Pineapple How many combinations of three scoop cones are possible? [Note: the repetition of flavours is allowed but the order in which the flavours are chosen does not matter]						
	(a) 10	(b) 20	(c) 35	(d) 243	n matter j		
Ans.	(c)	(0) 20	(c) 33	(u) 243			
		TD 2 \ A 1 1 4 4 1 1 -		C 41 1 4 1	ID2 TTI		
36.	Let $A \subseteq \mathbb{R}^2$ and $X = \mathbb{R}^2 \setminus A$ be subsets with subspace topology inherited from the usual topology on \mathbb{R}^2 . Then						
	(a) A is countable dense implies that <i>X</i> is totally disconnected.						
	(b) A is unbounded implies that X is compact.						
	(c) A is open implies that X is compact.						
A		implies that X is path connec	eted				
Ans.	(d) Let folke mere member functions on C. If f has a zero of order hat z = g and a has a note of order was z = 0.						
37.	Let f, g be meromorphic functions on \mathbb{C} . If f has a zero of order k at $z = a$ and g has a pole of order m at $z = 0$, then $g(f(z))$ has						
	(a) a zero of orde	r km at z = a	(b) a pole of or				
		r k - m at $z = a$	(d) a pole of or	rder k - m at z = a			
Ans.	(b)						
38.	- · · · ·	omial of the real variable x	_	-			
	$f(z) = \sum_{n=0}^{\infty} p(n)z^n$ where z is a complex variable. Then the radius of convergence of $f(z)$ is (a) 0 (b) 1 (c) k (d) ∞						
	(a) 0	CF(b) FCN CI	$(c)_k$	(d) ∞			
Ans.	(b)						
39.	Let G denote the group of all the automorphisms of the field $F_{3^{100}}$ that consists of 3^{100} elements. The number of distinct subgroups of G is equal to						
	(a) 4	(b) 3	(c) 100	(d) 9			
Ans.	(d)	. ,	• •	• •			
40.	Let p, q be distinct p	rimes, Then					
	(a) $\mathbb{Z}/p^2q\mathbb{Z}$ has ϵ	exactly 3 distinct ideals	(b) $\mathbb{Z}/p^2q\mathbb{Z}$ h	as exactly 3 distinct prin	ne ideals		

- - (c) $\mathbb{Z}/p^2q\mathbb{Z}$ has exactly 2 distinct prime ideals
- (d) $\mathbb{Z}/p^2q\mathbb{Z}$ has unique maximal ideals

Ans.

The homogeneous integral equation 41.

$$\varphi(x) - \lambda \int_{0}^{1} (3x - 2)t \ \varphi(t) dt = 0 \text{ has}$$

(a) one characteristic number

(b) three characteristic numbers

(c) two characteristic numbers

(d) No characteristic number

Ans. (d)

42. The initial value problem

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x, 0 \le x \le 1, t > 0 \text{ and } u(x, 0) = 2x \text{ has}$$

- (a) a unique solution u(x, t) which $\rightarrow \infty$ as $t \rightarrow \infty$
- (b) more than one solution
- (c) a solution which remains bounded as $t \rightarrow \infty$
- (d) no solution

Ans. (c)

43. Let $Y_1(x)$ and $Y_2(x)$ defined on [0,1] be twice continuously differentiable functions satisfying

$$Y''(x) + Y'(x) + Y(x) = 0$$
 Let $W(x)$ be the Wronskian of \mathbf{Y}_1 and \mathbf{Y}_2 and satisfy $W\left(\frac{1}{2}\right) = 0$. Then

(a)
$$W(x) = 0$$
 for $x \in [0,1]$

(b)
$$W(x) \neq 0$$
 for $x \in [0, 1/2) \cup (\frac{1}{2}, 1]$

(c)
$$W(x) > 0$$
 for $x \in (1/2,1]$

(d)
$$W(x) < 0$$
 for $x \in [0,1/2)$

Ans. (a)

- Consider two waves of same angular frequency ω , same angular wave number k, same amplitude a traveling in the positive direction of x- axis with the same speed and with phase difference ϕ , Then the superpositive principle yields a resultant wave with
 - (a) Amplitude 2a and phase ϕ
 - (b) Amplitude 2a and phase $(\phi/2)$
 - (c) Amplitude $2a \cos(\phi/2)$ and phase $(\phi/2)$
 - (d) Amplitude $2a \cos(\phi/2)$ and phase

Ans. (c)

45. Let
$$x = x(s)$$
, $y = y(s)$, $u = u(s)$, $s \in \mathbb{R}$ be the characteristic curve of the PDE $\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right) - u = 0$

passing through a given curve

$$x = 0, y = \tau, u = \tau^2, \tau \in \mathbb{R}$$

Then the characteristics are given by

(a)
$$x = 3\tau(e^s - 1), y = \frac{\tau}{2}(e^{-s} + 1), u = \tau^2 e^{-2s}$$

(b)
$$x = 2\tau (e^{-s} - 1), y = \tau (2e^{2s} - 1), u = \frac{\tau^2}{2} (1 + e^{-2s})$$

(c)
$$x = 2\tau (e^s - 1), y = \frac{\tau}{2} (e^s + 1), u = \tau^2 e^{2s}$$

(d)
$$x = \tau (e^{-s} - 1), y = -2\tau (e^{-s} + \frac{3}{2}), u = \tau^2 (2e^{-2s} - 1)$$

Ans. (c)

- Let f(x) = ax + b for $a, b \in \mathbb{R}$. Then the iteration $x_{n+1} = f(x_n)$ starting from any given x_0 for $n \ge 0$ converges 46.
 - (a) for all $a \in \mathbb{R}$
- (b) for no $a \in \mathbb{R}$
- (c) for $a \in [0,1)$ (d) only for a = 0

Ans. (c)

47. Consider the initial value problem in \mathbb{R}^2

$$Y'(t) = AY + BY$$
; $Y(0) = Y_0$, where $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

Then Y(t) is given by

- (a) $e^{tA}e^{tB}Y_0$
- (b) $e^{tB}e^{tA}Y_0$
- (c) $e^{t(A+B)}Y_0$
- (d) $e^{-t(A+B)}Y_0$

Ans.

48. The curve extremizing the functional

$$I(y) = \int_{1}^{2} \sqrt{\frac{1 + (y'(x))^{2}}{x}} dx,$$

- y(1) = 0, y(2) = 1 is
- (a) an ellipse
- (b) a parabola
- (c) a circle
- (d) a straight line

Ans. **(c)**

SECTION-C

Let V denote a vector space over of Field F and with a basis $B = \{e_1, e_2, ... e_n\}$. Let $x_1, x_2, ... x_n \in F$. Let 61.

$$C = \{x_1e_1, x_1e_1 + x_2e_2, ..., x_1e_1 + x_2e_2 + + x_ne_n\}$$
. Then

- (a) C is a linearly independent set implies that $x_i \neq 0$ for every i = 1, 2, ..., n.
- (b) $x_i \neq 0$ for every i = 1, 2, ..., n implies that C is a linearly independent set
- (c) The linear span C is V implies that $x_i \neq 0$ for every i = 1, 2, ..., n.
- (d) $x_i \neq 0$ for every i = 1, 2, ..., n implies that linear span of C is V

Ans. (a, b, c, d)

Let V denote the vector space of all polynomials over \mathbb{R} of degree less than or equal to n. Which of the **62.** following defines a norm on V?

(a)
$$\|p\|^2 = |p(1)|^2 + \dots + |p(n+1)|^2, p \in V$$

(b)
$$||p|| = \sup_{t \in [0,1]} |p(t)|, p \in V$$

(c)
$$||p|| = \int_{0}^{1} |p(t)| dt, p \in V$$

(d)
$$||p|| = \sup_{t \in [0,1]} |p'(t)|, p \in V$$

Ans. (a, b,c)

Let u, v, w be vectors in an inner product space V, satisfying ||u|| = ||v|| = ||w|| = 2 and **63.**

 $\langle u, v \rangle = 0, \langle u, w \rangle = 1, \langle v, w \rangle = -1$. Then which of the following are True?

(a)
$$||w+v-u|| = 2\sqrt{2}$$

(b) $\left\{ \frac{1}{2}u, \frac{1}{2}v \right\}$ forms an orthonormal basis of a two dimensional subspace of V

- (c) w and 4u w are orthogonal to each other
- (d) u, v, w are necessarily linearly independent

Ans. (a, b, c, d)

64. Let A be a 4×4 matrix over \mathbb{C} such that rank (A) = 2 and $A^3 = A^2 \neq 0$.

Suppose that A is not diagonalizable. Then

- (a) One of the Jordan blocks of the Jordan canonical from of A is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
- (b) $A^2 = A \neq 0$
- (c) There exists a vector v such that $Av \neq 0$ but $A^2v = 0$
- (d) The characteristic polynomial of A is $\chi^4 \chi^3$

Ans. (a,c,d)

65. Let $l^2 = \left\{ x = \left(x_1, x_2, \ldots \right) : x_n \in \mathbb{C} \ \forall n \ge 1 \text{ and } \sum_{n=1}^{\infty} \left| x_n \right|^2 < \infty \right\}$ and $e_n \in l^2$ be the sequence whose *n*-th element is

1 and all other elements are zero. Equip the space l^2 with the norm $\|x\| = \sqrt{\sum_{n=1}^{\infty} |x_n|^2}$. Then the set

$$S = \{e_n : n \ge 1\}$$

(a) is closed

(b) is bounded

(c) is compact

(d) contains a convergent subsequence

Ans. (a,b)

- **66.** Let $\varphi: \mathbb{R}^2 \to \mathbb{C}$ be the map $\varphi(x, y) = z$, where z = x + iy. Let $f: \mathbb{C} \to \mathbb{C}$ be the function $f(z) = z^2$ and $F = \varphi^{-1} f \varphi$. Which of the following are correct
 - (a) The linear transformation $T(x, y) = 2\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ represents the derivative of F at (x, y)
 - (b) The linear transformation $T(x, y) = 2 \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ represents the derivative of F at (x, y)
 - (c) The linear transformation T(z) = 2z represents the derivative of f at $z \in \mathbb{C}$
 - (d) The linear transformation T(z) = 2z represents the derivative of f only at 0

Ans. (a,c)

- **67.** Let $X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 5\}$ and $K = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2 \text{ or } 3 \le x^2 + y^2 \le 4\}$. Then,
 - (a) $X \setminus K$ has three connected components.
 - (b) $X \setminus K$ has no relatively compact connected component in X
 - (c) $X \setminus K$ has two relatively compact connected component in X
 - (d) All connected components of $X \setminus K$ are relatively compact in X

Ans. (a,c)

- **68.** For two subset X and Y of \mathbb{R} , let $X + Y = \{x + y : x \in X, y \in Y\}$
 - (a) If X and Y are open sets then X+Y is open
 - (b) If X and Y are closed sets then X+Y is closed

- (c) If X and Y are compact sets then X+Y is compact
- (d) If X is closed and Y is compact then X+Y is closed

(a,c,d)Ans.

- **69.** Let $\{f_n\}$ be a sequence of continuous functions on \mathbb{R} .
 - (a) If $\{f_n\}$ converges to f pointwise on \mathbb{R} , then $\lim_{n\to\infty}\int\limits_{-\infty}^{\infty}f_n(x)dx=\int\limits_{-\infty}^{\infty}f(x)dx$
 - (b) If $\{f_n\}$ converges to f uniformly on \mathbb{R} , then $\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$
 - (c) If $\{f_n\}$ converges to funiformly on \mathbb{R} , then f is continuous on \mathbb{R} .
 - (d) There exists a sequence of continuous functions $\{f_n\}$ on \mathbb{R} , such that $\{f_n\}$ converges to f uniformly on \mathbb{R} .

but
$$\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dx \neq \int_{-\infty}^{\infty} f(x) dx$$

Ans. (c,d)

70. Let *V* be the be of polynomials over \mathbb{R} of degree less than or equal to *n*.

For $p(x) = a_0 + a_1 x + ... + a_n x^n$ in V, define a linear transformation $T: V \to V$ by

 $(Tp)(x) = a_0 - a_1 x + a_2 x^2 + \dots + (-1)^n a_n x^n$. Then which of the following are correct?

- (a) T is one-to-one
- (b) T is onto
- (c) T is invertible
 - (d) $\det T = 0$

Ans. (a,b,c)

- Let $\{a_n\}$, $\{b_n\}$ be given bounded sequences of positive real numbers. Then (Here $a_n \uparrow b$ means a_n , increase 71. to a as n goes to ∞ , similarly, $b_n \downarrow b$ means b_n decreases to b as n goes to ∞)
 - (a) if $a_n \uparrow a$, then $\sup_{n \ge 1} (a_n b_n) = a \left(\sup_{n \ge 1} b_n \right)$ (b) if $a_n \uparrow a$, then $\sup_{n \ge 1} (a_n b_n) < a \left(\sup_{n \ge 1} b_n \right)$
 - (c) if $b_n \downarrow b$, then $\inf_{n \ge 1} (a_n b_n) = \left(\inf_{n \ge 1} a_n\right) b$ (d) if $b_n \downarrow b$, then $\inf_{n \ge 1} (a_n b_n) > \left(\inf_{n \ge 1} a_n\right) b$

Ans.

- Let $S \subseteq \mathbb{R}^2$ be defined by $S = \left\{ \left(m + \frac{1}{2^{|p|}}, n + \frac{1}{2^{|q|}} \right) : m, n, p, q \in \mathbb{Z} \right\}$. Then **72.**
 - (a) S is discrete in \mathbb{R}^2
 - (b) the set of limit points of *S* is the set $\{(m,n): m,n\in\mathbb{Z}\}$
 - (c) $\mathbb{R}^2 \setminus S$ is connected but not path connected.
 - (d) $\mathbb{R}^2 \setminus S$ is path connected.

Ans. (b,d)

- Consider a homogeneous system of linear equation Ax = 0, where A is an $m \times n$ real matrix and n > m. Then **73.** which of the following statements are always true?
 - (a) Ax = 0 has a solution
 - (b) Ax = 0 has no non-zero solution
 - (c) Ax = 0 has a non-zero solution
 - (d) Dimension of the space of all solutions is at least n-m

(a,c,d)Ans.

74. Let a,b,c be positive real numbers,

$$D = \left\{ \left(x_1, x_2, x_3 \right) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 \le 1 \right\},\,$$

$$E = \left\{ \left(x_1, x_2, x_3 \right) \in \mathbb{R}^3 : \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} \le 1 \right\}$$

and $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, det A > 1. Then, for a compactly supported continuous function f on \mathbb{R}^3 ,

Which of the following are correct?

(a)
$$\int_{D} f(Ax) dx = \int_{E} f(x) dx$$

(b)
$$\int_{D} f(Ax) dx = \frac{1}{abc} \int_{D} f(x) dx$$

(c)
$$\int_{D} f(Ax) dx = \frac{1}{abc} \int_{E} f(x) dx$$

(d)
$$\int_{\mathbb{R}^3} f(Ax) dx = \frac{1}{abc} \int_{\mathbb{R}^3} f(x) dx$$

Ans. (c,d)

75. Let $f: (0,1) \to \mathbb{R}$ be continuous. Suppose that $|f(x) - f(y)| \le |\sin x - \sin y|$ for all $x, y \in (0,1)$. Then

- (a) f is discontinuous at least at one paint in (0, 1).
- (b) f is continuous everywhere on (0, 1), but not uniformly continuous on (0, 1).
- (c) f is uniformly continuous on (0, 1)
- (d) $\lim_{x \to 0^+} f(x)$ exists.

Ans. (c,d)

76. Let $p_n(x) = a_n x^2 + b_n x + c_n$ be a sequence of quadratic polynomial where, $a_n, b_n, c_n \in \mathbb{R}$ for all $n \ge 1$ Let $\lambda_0, \lambda_1, \lambda_2$ be distinct real number such that $\lim_{n \to \infty} p_n(\lambda_0) = A_0, \lim_{n \to \infty} p_n(\lambda_1) = A_1$ and $\lim_{n \to \infty} p_n(\lambda_2) = A_2$. Then

(a) $\lim_{n\to\infty} p_n(x)$ exists for all $x\in\mathbb{R}$ (b) $\lim_{n\to\infty} p'_n(x)$ exists for all $x\in\mathbb{R}$

(c)
$$\lim_{n\to\infty} p_n\left(\frac{\lambda_0 + \lambda_1 + \lambda_2}{3}\right)$$
 does not exists

(d)
$$\lim_{n\to\infty} p'_n\left(\frac{\lambda_0 + \lambda_1 + \lambda_2}{3}\right)$$
 does not exists

Ans. (a,b)

77. Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x, y) = (x + 2y + y^2 + |xy|, 2x + y + x^2 + |xy|)$ for $(x, y) \in \mathbb{R}^2$. Then

- (a) f is discontinuous at (0, 0)
- (b) f is continuous at (0,0) but not differentiable at (0,0)
- (c) f is differentiable at (0,0)
- (d) f is differentiable at (0, 0) and the derivative Df(0, 0) is invertiable

Ans. (c,d)

78. Let $= \{(x, y) \in \mathbb{R}^2 : x + y \neq -1\}$. Define $f : A \to \mathbb{R}^2$ by $f(x, y) = \left(\frac{x}{1 + x + y}, \frac{t}{1 + x + y}\right)$. Then

- (a) the Jacobian matrix of f does not vanish on A
- (b) f is infinitely differentiable on A.

(c) f is injective on A

(d) $f(A) = \mathbb{R}^2$

Ans. (a,b,c)

79. Which of the following are compact?

(a)
$$\{(x,y) \in \mathbb{R}^2 : (x-1)^2 + (y-2)^2 = 9\} \cup \{(x,y) \in \mathbb{R}^2 : y = 3\}$$

(b)
$$\left\{ \left(\frac{1}{m}, \frac{1}{n} \in \mathbb{R}^2 : m, n, \in \mathbb{Z} \setminus \{0\} \right) \right\} \cup \left\{ \left(0, 0\right) \right\} \cup \left\{ \left(\frac{1}{m}, 0 : m \in \mathbb{Z} \setminus \{0\} \right) \right\} \cup \left\{ \left(0, \frac{1}{n} : n \in \mathbb{Z} \setminus \{0\} \right) \right\}$$

(c)
$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 - 3z^2 = 1\}$$

(d)
$$\{(x, y, z) \in \mathbb{R}^3 : |x| + 2|y| - 3|z| \le 1\}$$

Ans. (b,c)

80. Let f be an entire function, Suppose for each $a \in \mathbb{R}$, there exists at least one coefficient c_n is

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
, which is zero. Then

(a)
$$f^{(n)}(0) = 0$$
 for infinitely many $n \ge 0$

(b)
$$f^{(2n)}(0) = 0$$
 for every $n \ge 0$

(c)
$$f^{(2n+1)}(0) = 0$$
 for every $n \ge 0$

(d) There exists $K \ge 0$ such that $f^{(n)}(0) = 0$ for all $n \ge k$

Ans. (a,d)

81. Let $K \subseteq \mathbb{C}$ be a bounded set Let $H(\mathbb{C})$ denote the set of all entire functions and let C(K) denote the set of all continuous functions on K. Consider the restriction map $r: H(\mathbb{C}) \to C(K)$ given by $r(f) = f_k$ then r is injective if

(a) K is compact

(b) K is connected

(c) K is uncountable

(d) K is finite

Ans. (c)

82. For
$$z \in \mathbb{C}$$
, define $f(Z) = \frac{e^z}{e^z - 1}$. Then

- (a) f is entire
- (b) the only singularities of f are poles
- (c) f has infinite many poles on the imaginary axis
- (d) each pole of f is simple

Ans. (b,c,d)

83. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Then there exists a holomorphic function $f: D \to \overline{D}$ with f(0) = 0 with the property

(a)
$$f'(0) = 1/2$$

(b)
$$|f(1/3)| = 1/4$$

(c)
$$f(1/3)=1/2$$

(d)
$$|f'(0)| = \sec\left(\frac{\pi}{6}\right)$$

Ans. (a,b)

- 84. Let $f(x) = x^4 + 3x^3 9x^2 + 7x + 27$ and let p be a prime. Let $f_p(x)$ denote the corresponding polynomial with coefficients in $\mathbb{Z}/p\mathbb{Z}$. Then
 - (a) $f_2(x)$ is irreducible over $\mathbb{Z}/2\mathbb{Z}$
- (b) f(x) is irreducible over \mathbb{Q}

(c) $f_3(x)$ is irreducible over $\mathbb{Z}/3\mathbb{Z}$

(d) f(x) is irreducible over \mathbb{Z}

Ans. (a,b,d)

- 85. Suppose $(F, +, \cdot)$ is finite field with 9 elements. Let G = (F, +) and $H = (F \setminus \{0\}, \cdot)$ denote the underlying additive and multiplicative groups respectively. Then
 - (a) $G \cong (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$
 - (b) $G \cong (\mathbb{Z}/9\mathbb{Z})$
 - (c) $H \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$
 - (d) $G \cong (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$ and $H \cong (\mathbb{Z}/8\mathbb{Z})$

Ans. (a,d)

- **86.** Consider the multiplicative group G of all the (complex) 2^n -th roots of unity where n = 0, 1, 2... Then
 - (a) every proper subgroup of G is finite
 - (b) G has a finite set of generators
 - (c) G is cyclic
 - (d) Every finite subgroup of G is cyclic

Ans. (a,d)

- 87. Let R be the ring of all entries function i,e. R is the ring of functions $f: \mathbb{C} \to \mathbb{C}$ that are analytic at every point of \mathbb{C} , with respect to pointwise addition and multiplication. Then
 - (a) The units in R are precisely the nowhere vanishing entire functions, i.e., $f: \mathbb{C} \to \mathbb{C}$ such that f is entire and $f(\alpha) \neq 0$ for all $\alpha \in \mathbb{C} \setminus \mathbb{D}$
 - (b) The irreducible elements of R are, up to multiplication by a unit, linear polynomials of the form $z-\alpha$, where $\alpha \in \mathbb{C}$, i,e, if $f \in \mathbb{R}$ is irreducible, then $f(z) = (z-\alpha)g(z)$ for all $z \in \mathbb{C}$ where g is unit in R and $\alpha \in \mathbb{C}$
 - (c) R is an integral domain
 - (d) R is unique factorization domain

Ans. (a,b,c)

- **88.** We are given a class consisting of 4 boys and 4 girls. A committee that consists of *a* President, *a* Vice-President and *a* Secretary is to be chosen among the 8 students of the class. Let *a* denote the number of ways of choosing the committee in such a way that the committee has at least one boy and at least one girl. Let b denote the number of ways of choosing the committee in such a way that the number of girl is greater than or equal to that of the boys. Then
 - (a) a = 288
- (b) b = 168
- (c) a = 144
- (d) b = 192

Ans. (a,b)

89. Pick the correct statements

- (a) $\mathbb{Q}\!\left(\sqrt{2}\right)$ and $\mathbb{Q}\!\left(i\right)$ are isomorphic as \mathbb{Q} -vector spaces
- (b) $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i)$ are isomorphic as fields
- (c) $\operatorname{Gal}_{\mathbb{Q}}\left(\mathbb{Q}\left(\sqrt{2}\right)/\mathbb{Q}\right) \cong \operatorname{Gal}_{\mathbb{Q}}\left(\mathbb{Q}\left(i\right)/\mathbb{Q}\right)$
- (d) $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i)$ are both Galois extensions of \mathbb{Q}

Ans. (a,c,d)

- **90.** For positive integers m and n, let $F_n = 2^{2^n} + 1$ and $G_m = 2^m 1$, Which of the following statements are true?
 - (a) F_n divides G_m whenever m > n

- (b) GCD $(F_n G_m) = 1$ whenever $m \neq n$
- (c) GCD $(F_n, G_m) = 1$ whenever $m \neq n$
- (d) G_m divides F_n whenever m < n

Ans. (a,c)

- **91.** Consider a particle of mass *m* is simple harmonic oscillation about the origin with spring constant *k*; then for the Lagrangian L and the Hamiltonian H of the system
 - (a) $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$, $H(x, \dot{x}) = \frac{p^2}{2m} + \frac{1}{2}kx^2$; p is generalized momentum
 - (b) $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$ the generalized momentum is $p = m\dot{x}$
 - (c) $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$ and the generalized momentum is $p = m\dot{x}$
 - (d) $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$, $H(x, \dot{x}) = \frac{m\dot{x}^2}{2} + \frac{1}{2}kx^2$

Ans. (a,c,d)

92. Consider the boundary value problem $-u''(x) = \pi^2 u(x)$, $x \in (0,1)$, u(0) = u(1) = 0. If u and u' are continuous on [0,1], then

(a)
$$\int_{0}^{1} u^{3}(x) dx = 0$$

(b)
$$u'^2(x) + \pi^2 u^2(x) = u'^2(0)$$

(c)
$$u'^2(x) + \pi^2 u^2(x) = u'^2(1)$$

(d)
$$\int_{0}^{1} u^{2}(x) dx = \frac{1}{\pi^{2}} \int_{0}^{1} u'^{2}(x) dx$$

Ans. (b,c,d)

93. Let $y_1(x)$ and $y_2(x)$ form a complete set of solution to the differential equation

$$y'' - 2xy' + \sin(e^{2x^2})y = 0, x \in [0,1]$$
 with

$$y_1(0) = 0, y_1'(0) = 1, y_2(0) = 1, y_2'(0) = 1$$

Then the Wronskin W(x) of $y_1(x)$ and $y_2(x)$ at x = 1 is

(a) e^2

(b) *−e*

- (c) $-\rho^2$
- (d) *e*

Ans. (b)

94. Let λ_1, λ_2 be the characteristic numbers and f_1, f_2 the corresponding functions for the homogeneous integral

equation
$$\varphi(x) - \lambda \int_{0}^{1} (xt + 2x^{2}) \varphi(t) dt = 0$$
. Then

(a)
$$\lambda_1 = -18 - 6\sqrt{10}, \lambda_2 = -18 + 6\sqrt{10}$$

(b)
$$\lambda_1 = -36 - 12\sqrt{10}, \lambda_2 = -36 + 12\sqrt{10}$$

(c)
$$\int_{0}^{1} f_{1}(x) f_{2}(x) dx = 1$$

(d)
$$\int_{0}^{1} f_{1}(x) f_{2}(x) dx = 0$$

Ans. (a,d)

95. Consider the function $f(x) = \sqrt{2+x}$ for $x \ge -2$ and the iteration $x_{n+1} = f(x_n)$; $n \ge 0$ for $x_0 = 1$ What are the possible limits of the iteration?

(a)
$$\sqrt{2+\sqrt{2+\sqrt{2+...}}}$$

(b)
$$-1$$

Ans. (a,c)

96. The PDE
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$
 is

(a) parabolic and has characteristics $\xi(x, y) = x + 2y, \eta(x, y) = x - 2y$

(b) reducible to the canonical form, $\frac{\partial^2 u}{\partial \xi^2} = 0$, where $\xi(x, y) = x + 2y$

(c) reducible to the canonical form, $\frac{\partial^2 u}{\partial \eta^2} = 0$, where $\eta(x, y) = x + y$

(d) parabolic and has the general solution $u = (x - y) f_1(x + y) + f_2(x - y)$ where f_1, f_2 are arbitrary functions

Ans. (c)

97. Let u(x, y) be an extremal of the function $J(u) = \iint_D \left[\frac{1}{2} u_x^2 + \frac{1}{2} u_y^2 + e^{xy} u \right] dx dy$, where D is the open unit disk in \mathbb{R}^2 . Then u satisfies

(a) $u_{xx} + u_{yy} - e^{x+y} = 0$

(a)
$$u_{xx} + u_{yy} = \epsilon$$

(b)
$$u_{xx} + u_{yy} = e^{xy}$$

(c)
$$u_{xx} + u_{yy} = -e^{xy}$$

(d) $\iint_{D} \left[u_{xx} + y_{yy} - e^{xy} \right] h(x, y) dx dy = 0 \text{ for every smooth, h vanishing on the boundary of } D.$

Ans. (b,d)

98. Consider the iteration

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right), n \ge 0$$

for given $x_0 \neq 0$. Then

(a) x_n converges to $\sqrt{2}$ with rate of convergence 1

(b) x_n converges to $\sqrt{2}$ with rate of convergence 2.

(c) The given iteration is the fixed point iteration for $f(x) = x^2 - 2$

(d) The given iteration is the Newton's method for $f(x) = x^2 - 2$

Ans. (b,d)

99. If $y:[0,\infty)\to (0,\infty]$ is a continuously differentiable function satisfying

$$y(t) = y_0 - \int_0^1 y(d)ds$$
 for $t \ge 0$, then

(a)
$$y^2(t) = y^2(0) + \left(\int_0^t y(s)ds\right)^2 - 2y(0)\int_0^t y(s)ds$$
 (b) $y^2(t) = y^2(0) + 2y\int_0^t y^2(s)ds$

(c)
$$y^2(t) = y^2(0) - \int_0^t y(s) ds$$
 (d) $y^2(t) = y^2(0) - 2\int_0^t y^2(s) ds$

Ans. (a,d)

100. Let u(t) be a continuously differentiable function taking non-negative values for t > 0 satisfying u'(t) = 3 $u(t)^{2/3}$ and u(0) = 0. Which of the following are possible solutions of the above equation?

(a)
$$u(t) = 0$$

(b)
$$u(t) = t^3$$

(c)
$$u(t) = \begin{cases} 0 \text{ for } 0 < t < 1 \\ (t-1) \text{ for } t \ge 1 \end{cases}$$

(d)
$$u(t) = \begin{cases} 0 \text{ for } 0 < t < 3 \\ (t-3)^3 \text{ for } t \ge 3 \end{cases}$$

Ans. (a,b,c,d)

101. Let u(x, t) be the solution of the equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t},$$

which tends to zero as $t \to \infty$ and has the value $\cos(x)$ when t = 0

Then

(a) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-nt}$ where a_n, b_n are arbitrary constants

(b) $u = \sum_{n=1}^{\infty} a_n \sin(nx + b_n) e^{-n^2 t}$, where a_n, b_n are non-zero constants

(c) $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n) e^{-nt}$, where a_n , are not all zero and $b_n = 0$ for $n \ge 1$

(d) $u = \sum_{n=1}^{\infty} a_n \cos(nx + b_n) e^{-n^2 t}$, where $a_1 \neq 0$, $a_n = 0$ for n > 1, and $b_n = 0$ for $n \geq 1$

Ans. (d)

102. Let $xyu = c_1$ and $x^2 + y^2 - 2u = c_2$, where c_1 and c_2 are arbitrary constants, be the first integrals of the PDE

 $x(u+y^2)\frac{\partial u}{\partial x} - y(u+x^2)\frac{\partial u}{\partial y} = (x^2-y^2)u$. Then the solution of the PDE x+y=0, u=1 is given by

(a)
$$x^3 + y^3 + 2xyu^2 + 2x^2u = 0$$

(b)
$$x^3 + yx^2 + (x^2 + xy)u = 0$$

(c)
$$x^2 + y^2 + 2(xy-1)u + 2 = 0$$

(d)
$$x^2 - y^2 - u(x + y - 2) - 2 = 0$$

Ans. (c)

103. Consider the following primal Linear Programming Problem.

$$\max \ z = -3x_1 + 2x_2$$

Subject to $x_1 \le 3$,

$$x_1 - x_2 \le 0$$
,

$$x_1, x_2 \ge 0.$$

Which of the following statement are True?

- (a) The primal problem has an optimal solution
- (b) The primal problem has an unbiased solution
- (c) The dual problem has an unbounded solution
- (d) The dual problem has no feasible solution

Ans. (b,d)

