CSIR-NET-(P YQ) MATHEMATICAL SCIENCE JUNE-2016-I

PART-B

	$(1)^n$	
1.	$\lim_{n\to\infty} \left(1 - \frac{1}{n^2}\right)$	equal

(a) 1

- (b) $e^{-1/2}$ (c) e^{-2} (d) e^{-1}

(a) Ans.

- Consider the interval (-1, 1) and a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of elements in it. Then, 2.
 - (a) Every limit point of $\{\alpha_n\}$ is in (-1, 1)
 - (b) Every limit point of $\{\alpha_n\}$ is in [-1, 1]
 - (c) The limit points of $\{\alpha_n\}$ can only be in $\{-1, 0C, 1\}$
 - (d) The limit points of $\{\alpha_n\}$ cannot be in $\{-1, 0, 1\}$

Ans. **(b)**

- **3.** Let $F: \mathbb{R} \to \mathbb{R}$ be a monotone function. Then
 - (a) F has no discontinuities.
 - (b) F has only finitely many discontinuities.
 - (c) F can have at most countably many discontinuities.
 - (d) F can have uncountably many discontinuities.

(c) Ans.

4. Consider the function

Consider the function **CAREER ENDEAVO**

$$f(x,y) = \frac{x^2}{y^2}, (x,y) \in [1/2,3/2] \times [1/2,3/2]$$

The derivative of the function at (1, 1) along the direction (1, 1) is:

(a) 0

(b) 1

- (c) 2
- (d) -2

(a) Ans.

- Consider the improper Riemann integral $\int y^{-1/2} dy$. This integral is: 5.
 - (a) continuous in $[0,\infty)$

(b) continuous only in $(0, \infty)$

(c) discontinuous in $(0, \infty)$

(d) discontinuous only in $\left(\frac{1}{2}, \infty\right)$

Ans. (a) **6.** Which one of the following statements is true for the sequence of functions

$$f_n(x) = \frac{1}{n^2 + x^2}, n = 1, 2, ..., x \in [1/2, 1]$$
?

- (a) The sequence is monotonic and has 0 as the limit for all $x \in [1/2,1]$ as $n \to \infty$.
- (b) The sequence is not monotonic but has $f(x) = \frac{1}{x^2}$ as the limit as $n \to \infty$.
- (c) The sequence is monotonic and has $f(x) = \frac{1}{x^2}$ as the limit as $n \to \infty$.
- (d) The sequence is not monotonic but has 0 as the limit

Ans. (a)

7. Given a n×n matrix B define e^B by

$$e^B = \sum_{j=0}^{\infty} \frac{B^j}{j!}$$

Let p be the characteristic polynomial of B. Then the matrix $e^{p(B)}$ is

(a) $I_{n\times n}$

- (b) $0_{n \times n}$
- (c) $eI_{n \times n}$
- (d) $\pi I_{n \times n}$

Ans. (a)

8. Let *A* be a $n \times n$ real symmetric non-singular matrix. Suppose there exists $x \in \mathbb{R}^n$ such that x'Ax < 0 Then we can conclude that

(a) $\det (A) < 0$

(b) B = -A is positive definite

(c) $\exists y \in \mathbb{R}^n : y'A^{-1}y < 0$

(d) $\forall y \in \mathbb{R}^n : y'A^{-1}y < 0$

Ans. (c

9. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Let $f : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(v, w) = w^T A v$.

Pick the correct statement from below:

- (a) There exists an eigenvector v of A such that Av is perpendicular to v
- (b) The set $\{v \in \mathbb{R}^2 \mid f(v, v) = 0\}$ is a nonzero subspace of \mathbb{R}^2
- (c) If $v, w \in \mathbb{R}^2$ are nonzero vectors such that f(v, v) = 0 = f(w, w), then v is a scalar multiple of w.
- (d) For every $v \in \mathbb{R}^2$, there exists a nonzero $w \in \mathbb{R}^2$ such that f(v, w) = 0

Ans. (d)

10. Let *A* be a $n \times m$ matrix and *b* be a $n \times 1$ vector (with real entries). Suppose the equation Ax = b, $x \in \mathbb{R}^m$ admits a unique solution. Then we can conclude that

- (a) $m \ge n$
- (b) $n \ge m$
- (c) n = m
- (d) n > m

Ans. (b)

11. Let *V* be the vector space of all real polynomials of degree ≤ 10 . Let Tp(x) = p'(x) for $p \in V$ be a linear transformation from *V* to *V*. Consider the basis $\{1, x, x^2, x^{10}\}$ of *V*. Let A be the matrix of *T* with respect to this basis. Then

(a) Trace A = I

- (b) $\det A = 0$
- (c) there is no $m \in \mathbb{N}$ such that $A^m = 0$
- (d) A has a nonzero eigenvalue

Ans. (b)

12. Let $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3) \in \mathbb{R}^3$ be linearly independent.

Let $\delta_1 = x_2 y_3 - y_2 x_3$, $\delta_2 = x_1 y_3 - y_1 x_3$, $\delta_3 = x_1 y_2 - y_1 x_2$. If V is the span of x, y,

then

(a)
$$V = \{(u, v, w) : \delta_1 u - \delta_2 v + \delta_3 w = 0\}$$

(b)
$$V = \{(u, v, w) : -\delta_1 u + \delta_2 v + \delta_3 w = 0\}$$

(c)
$$V = \{(u, v, w) : \delta_1 u + \delta_2 v - \delta_3 w = 0\}$$

(d)
$$V = \{(u, v, w) : \delta_1 u + \delta_2 v + \delta_3 w = 0\}$$

Ans. (a)

13. Let p(x) be a polynomial of degree $d \ge 2$. The radius of convergence of the power series $\sum_{n=0}^{\infty} P(n) z^n$ is:

(a) 0

(b) 1

- (c) ∞
- (d) dependent on d

Ans. (b)

14. Let P(z), Q(z) be two complex non-constant polynomials of degree m, n respectively. The number of roots of P(z) = P(z) Q(z) counted with multiplicity is equal to:

- (a) $\min\{m,n\}$
- (b) $\max\{m,n\}$
- (c) m + n
- (d) m-n

Ans. (c)

15. The residue of the function $f(z) = e^{e^{-1/z}}$ at z = 0 is

- (a) $1+e^{-1}$
- (b) e^{-1}
- (c) $-e^{-1}$
- (d) $1 e^{-1}$

Ans. (c)

16. Let *D* be the open unit disc in \mathbb{C} and H(D) be the collection of all holomorphic functions on it. Let

$$S = \left\{ f \in H(D) : f\left(\frac{1}{2}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) = \frac{1}{4}, \dots f\left(\frac{1}{2n}\right) = \frac{1}{2n}, \dots \right\}$$

and

$$T = \left\{ f \in H(D) : f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) = f\left(\frac{1}{5}\right) = \frac{1}{4}, \dots, f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{2n}, \dots \right\}$$

Then

(a) Both S, T are singleton sets

(b) S is a singleton set but $T = \phi$

(c) T is a singleton set but $S = \phi$

(d) Both S, T are empty

Ans. (b)

17. Which of the following statements is FALSE? There exists an integer such that:

- (a) $x \equiv 23 \mod 1000$ and $x \equiv 45 \mod 6789$
- (b) $x \equiv 23 \mod 1000 \text{ and } x \equiv 54 \mod 6789$
- (c) $x \equiv 32 \mod 1000 \text{ and } x \equiv 54 \mod 9876$
- (d) $x \equiv 32 \mod 1000 \text{ and } x \equiv 44 \mod 9876$

Ans. (c)

18. Let p be a prime number. How many distinct sub-rings (with unity) of cardinality p does the field F_{p^2} have ?

(a) 0

(b) 1

- (c) p
- (d) p^2

Ans. (b)

Let $G = (\mathbb{Z}/25\mathbb{Z})^*$ be the group of units (i.e. the elements that have a multiplicative inverse) in the ring $(\mathbb{Z}/25\mathbb{Z})$ 19. . Which of the following is a generator of *G*?

(a) 3

(b) 4

- (c) 5
- (d) 6

(a) Ans.

20. Let $p \ge 5$ be a prime. Then

- (a) $\mathbb{F}_{p} \times \mathbb{F}_{p}$ has at least five subgroups of order p
- (b) Every subgroup of $\mathbb{F}_p \times \mathbb{F}_p$ is of the form $H_1 \times H_2$ where H_1 , H_2 are subgroups of \mathbb{F}_p
- (c) Every subgroup of $\mathbb{F}_p \times \mathbb{F}_p$ is an ideal of the ring $\mathbb{F}_p \times \mathbb{F}_p$
- (d) The ring $\mathbb{F}_{p} \times \mathbb{F}_{p}$ is a field

Ans. (a)

21. Let y_1 and y_2 be two solutions of the problem

$$y''(t) + ay'(t) + by(t) = 0, t \in \mathbb{R}$$
$$y(0) = 0$$

where a and b are real constants. Let w be the Wronskian of y_1 and y_2 . Then

- (a) $w(t) = 0, \forall t \in \mathbb{R}$
- (b) $w(t) = c, \forall t \in \mathbb{R}$ for some positive constant c
- (c) w is a nonconstant positive function
- (d) There exists $t_1, t_2 \in \mathbb{R}$ such that $w(t_1) < 0 < w(t_2)$

Ans.

22. Let
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
, $x(t) = \begin{vmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{vmatrix}$ and $|x(t)| = (x_1^2(t) + x_2^2(t) + x_3^2(t))^{1/2}$. Then any solution of the first

order system of the ordinary differential equation

$$x'(t) = Ax(t)$$

$$x(0) = x_0$$
 satisfies

- (a) $\lim_{t \to \infty} |x(t)| = 0$ (b) $\lim_{t \to \infty} |x(t)| = \infty$ (c) $\lim_{t \to \infty} |x(t)| = 2$ (d) $\lim_{t \to \infty} |x(t)| = 12$

Ans.

Let a, b, c, d be four differentiable functions defined on \mathbb{R}^2 . Then the partial differential equation 23.

$$\left(a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y}\right)\left(c(x,y)\frac{\partial}{\partial x} + d(x,y)\frac{\partial}{\partial y}\right)u = 0 \text{ is}$$

(a) always hyperbolic

(b) always parabolic

(c) never parabolic

(d) never elliptic

(d) Ans.

24. For the Cauchy problem

$$u_t - uu_x = 0, x \in \mathbb{R}, t > 0$$

$$u(x,0) = x, x \in \mathbb{R},$$

which of the following statements is true?

- (a) The solution exists for all t > 0.
- (b) The solution u exists for $t < \frac{1}{2}$ and breaks down at $t = \frac{1}{2}$
- (c) The solution u exists for t < 1 and breaks down at t = 1.
- (d) The solution u exists for t < 2 and breaks down at t = 2.

Ans. (c)

25. Let $f(x) = x^2 + 2x + 1$ and the derivative of f at x = 1 is approximated by using the central-difference formula

$$f'(1) \approx \frac{f(1+h)-f(1-h)}{2h}$$
 with $h = \frac{1}{2}$.

Then the absolute value of the error in the approximation of f'(1) is equal to

(a) 1

- (b) 1/2
- (c) 0
- (d) 1/12

Ans. (c)

- **26.** The curve of fixed length l, that joins the points (0, 0) and (1, 0), lies above the x-axis, and encloses the maximum area between itself and the x-axis, is a segment of
 - (a) a straight line
- (b) a parabola
- (c) an ellipse
- (d) a circle.

Ans. (d)

27. Consider the integral equation

$$y(x) = x^3 + \int_0^x \sin(x-t)y(t)dt, x \in [0,\pi]$$

Then the value of y(1) is

(a) 19/20

(b) 1

- (c) 17/20
- (d) 21/20

Ans. (d)

28. Consider the equations of motion for a system

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial \dot{q}_i} = 0, i = 1, 2, 3, \dots, n$$
CAREER ENDEAVOUR

where

$$L = T - V \left[\text{with } T(t, \dot{q}_i, \dot{q}_i) \text{ as kinetic energy and } V(t, q_i) \text{ as potential energy} \right], q_i$$

the generalized coordinates, and q_i the generalized velocities. Then the equations of motion in the form as above are

- (a) necessarily restricted to a conservative system but there is no unique choice of L
- (b) not necessarily restricted to a conservative system and there is a unique choice of L
- (c) necessarily restricted to a conservative system and there is a unique choice of L
- (d) not necessarily restricted to a conservative system and there is no unique choice of L

Ans. (*)

- 29. Hundred (100) tickets are marked 1, 2,...., 100 and are arranged at random. Four tickets are picked from these tickets and are given to four persons A, B, C and D. What is the probability that A gets the ticket with the largest value (among A, B, C, D) and D gets the ticket with the smallest value (among A, B, C, D)?
 - $(a)\frac{1}{4}$

- (b) $\frac{1}{6}$
- (c) $\frac{1}{2}$
- (d) $\frac{1}{12}$

Ans.

Let X and Y be independent and identically distributed random variables such that $P(X = 0) = P(X = 1) = \frac{1}{2}$. **30.**

Let Z = X + Y and W = |X - Y|. Then which statement is not correct?

(A) X and W are independent

(b) Y and W are independent

(c) Z and W are uncorrelated

(d) Z and W are independent.

Ans.

31. Let $\{X_t\}$ and $\{Y_t\}$ be two independent pure birth processes with birth rates λ_1 and λ_2 respectively.

Let $Z_t = X_t + Y_t$. Then

- (a) $\{Z_i\}$ is not a pure birth process.
- (b) $\{Z_i\}$ is a pure birth process with birth rate $\lambda_1 + \lambda_2$.
- (c) $\{Z_i\}$ is a pure birth process with birth rate min (λ_1, λ_2) .
- (d) $\{Z_i\}$ is a pure birth process with birth rate $\lambda_1\lambda_2$.

Ans. **(b)**

Let $X_1 \sim N(0,1)$ and let **32.**

$$X_2 = \begin{cases} -X_1, & -2 \le X_1 \le 2 \\ X_1, & \text{otherwise} \end{cases}$$

Then identify the correct statement.

- (a) $Corr(X_1, X_2) = 1$
- (b) X_2 does not have N(0, 1) distribution.
- (c) (X_1, X_2) has a bivariate normal distribution.
- (d) (X_1, X_2) does not have a bivariate normal distribution.

Ans.

- Let $X_1, ..., X_n$ be a random sample from N $(\theta, 1)$, where $\theta \in \{1, 2\}$. Then which of the following statements about **33.** the maximum likelihood estimator (MLE) of θ is correct?
 - (a) MLE of θ does not exist.
 - (b) MLE of θ is $\overline{\chi}$.
 - (c) MLE of θ exists but it is not \overline{X} .
 - (d) MLE of θ is an unbiased estimator of θ .

(c) Ans.

Let $X_1,...,X_n$ denote a random sample from a $N(\mu,\sigma^2)$ distribution. Let $\mu \in \mathbb{R}$ be known and $\sigma^2(>0)$ be 34. unknown. Let $\chi^2_{n,\alpha/2}$ be an upper $(\alpha/2)^{th}$ percentile point of a χ^2_n distribution. Then a $100(1-\alpha)\%$ confidence interval σ^2 for is given by

(a)
$$\left(\frac{\left(\sum_{1}^{n}X_{i}^{2}-\mu^{2}\right)}{n\chi_{n,\alpha/2}^{2}}, \frac{\left(\sum_{1}^{n}X_{i}^{2}-\mu^{2}\right)}{n\chi_{n,1-\alpha/2}^{2}}\right)$$

(b)
$$\left(\frac{\sum_{1}^{n} \left(X_{i} - \mu \right)^{2}}{\left(n - 1 \right) \chi_{(n-1), \alpha/2}^{2}}, \frac{\left(\sum_{1}^{n} X_{i} - \mu \right)^{2}}{\left(n - 1 \right) \chi_{(n-1), 1 - \alpha/2}^{2}} \right)$$

(c)
$$\left(\frac{\sum_{1}^{n}\left(X_{i}-\overline{X}\right)^{2}}{n\chi_{n,\alpha/2}^{2}},\frac{\sum_{1}^{n}\left(X_{i}-\overline{X}\right)^{2}}{n\chi_{n,1-\alpha/2}^{2}}\right)$$

(d)
$$\left(\frac{\sum_{1}^{n} \left(X_{i} - \mu\right)^{2}}{n\chi_{n,\alpha/2}^{2}}, \frac{\sum_{1}^{n} \left(X_{i} - \mu\right)^{2}}{n\chi_{n,1-\alpha/2}^{2}}\right)$$

Ans. (d)

- 35. In the context of testing of statistical hypotheses, which one of the following statements is true?
 - (a) When testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , the likelihood ratio principle leads to the most powerful test.
 - (b) When testing a simple hypothesis against an alternative simple hypothesis H_0 . H_1 , P [rejecting $H_0|H_0$ is true] + P [accepting $H_0|H_1$ is true] = 1.
 - (c) For testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , randomized test is used to achieve the desired level of the power of the test.
 - (d) UMP tests for testing a simple hypothesis H₀ against an alternative composite H₁, always exist.

Ans. (a)

36. Let be Y_1, Y_2, Y_3 uncorrelated observations with common variance σ^2 and expectations given by

 $\mathbb{E}(Y_1) = \beta_1, \mathbb{E}(Y_2) = \beta_2$ and $\mathbb{E}(Y_3) = \beta_1 + \beta_2$, where β_1, β_2 are unknown parameters. The best linear unbiased estimator of $\beta_1 + \beta_2$

(b)
$$Y_1 + Y_2$$

(c)
$$\frac{1}{2}(Y_1 + Y_2 + 2Y_3)$$

(d)
$$\frac{1}{2}(Y_1 + Y_2 + Y_3)$$

Ans. (c)

37. Let $\underline{X} \sim N_3(\underline{\mu}, \Sigma)$ where $\underline{\mu} = (1, 1, 1)$ and $\sum = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & c \\ 1 & c & 2 \end{pmatrix}$. The value of c such that X_2 and

 $-X_1 + X_2 - X_3$ are independent is

(a)
$$-2$$

(d) 1

Ans. (c)

38. A sample of size $n \ge 2$ is drawn without replacement from a finite population of size N, using an arbitrary sampling scheme. Let π_i denote the inclusion probability of the i-th unit and π_{ij} , the joint inclusion probability of units i and $j, 1 \le i < j \le N$. Which of the following statements is always true?

(a)
$$\sum_{i=1}^{N} \pi_i = n$$

(b)
$$\sum_{j=1}^{N} \pi_{ij} = n\pi_{i}, 1 \le i \le N$$

(c)
$$\pi_{ij} > 0$$
 for all $i, j, 1 \le i < j \le N$

(d)
$$\pi_i \pi_j - \pi_{i,i} > 0$$
 for all $i, j, 1 \le i < j \le N$

Ans. (a)

39. Consider a series system with two independent components. Let the component lifespan have exponential distribution with density

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & , \lambda > 0, x > 0 \\ 0, & \text{otherwise} \end{cases}$$

If n observations $X_1, X_2, ..., X_n$ on lifespan of this component are available and

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i},$$

then the maximum likelihood estimator of the reliability of the system is given by

(a)
$$\left(1 - e^{-t/\bar{X}}\right)^2$$

(b)
$$1 - \left(1 - e^{-t/\bar{X}}\right)^2$$
 (c) $e^{-2t/\bar{X}}$

(c)
$$e^{-2t/\bar{X}}$$

(d)
$$1 - e^{-2t/\bar{X}}$$

Ans. (c)

Customers arrive at an ice cream parlour according to a Poisson process with rate 2. Service time distribution 40. has density function

$$f(x) = \begin{cases} 3e^{-3x} & , x > 0 \\ 0, & x \le 0 \end{cases}$$

Upon being served a customer may rejoin the queue with probability 0.4, independently of new arrivals; also a returning customer's service time is the same as that of a new arriving customer. Customers behave independently of each other. Let X(t) = number of customers in the queue at time. Which among the following is correct?

(a) $\{X(t)\}\$ grows without bound with probability 1.

(b) {X(t)} has stationary distribution given by $\pi_k = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^k$, k = 0, 1, 2, ...

(c) $\{X(t)\}\$ has stationary distribution given by $\pi_k = (0.1)(0.9)^k$, k = 0,1,2,...

(d) {X(t)} has stationary distribution given by $\pi_k = (0.4)(0.6)^k$, k = 0,1,2,...

Ans. (a)

Let $x_1 = 0$, $x_2 = 1$, and for $n \ge 3$, define $x_n = \frac{x_{n-1} + x_{n-2}}{2}$. Which of the following is/are true? 41.

(a) $\{x_n\}$ is a monotone sequence

(b) $\lim_{n\to\infty} x_n = \frac{1}{2}$

(d) $\{x_n\}$ is a Cauchy sequence

(d) $\lim_{n\to\infty} x_n = \frac{2}{2}$

(c,d)Ans.

42. Let $\{x_n\}$ be an arbitrary sequence of real numbers. Then

- (a) $\sum_{n=1}^{\infty} |x_n|^p < \infty$ for some $1 implies <math>\sum_{n=1}^{\infty} |x_n|^q < \infty$ for any q > p.
- (b) $\sum_{n=1}^{\infty} |x_n|^p < \infty$ for some $1 implies <math>\sum_{n=1}^{\infty} |x_n|^q < \infty$ for any $1 \le q < p$.
- (c) Given any $1 , there is a real sequence <math>\{x_n\}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$ but $\sum_{n=1}^{\infty} |x_n|^q = \infty$
- (d) Given any $1 < q < p < \infty$, there is a real sequence $\left\{x_n\right\}$ such that $\left.\Sigma_{n=1}^{\infty}\left|x_n\right|^p < \infty$ but $\left.\Sigma_{n=1}^{\infty}\left|x_n\right|^q = \infty$

Ans.	(a,d)
43.	Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and $f(x+1) = f(x)$ for all $x \in \mathbb{R}$. Then
	(a) f is bounded above, but not bounded below
	(b) f is bounded above and below, but may not attain its bounds
	(c) f is bounded above and below and f attains its bounds
	(d) f is uniformly continuous
Ans.	(c,d)

Take the closed interval [0,1] and open interval (1/3, 2/3). Let $K = [0,1] \setminus (1/3, 2/3)$. For $x \in [0,1]$ define 44. f(x) = d(x, K) where $d(x, K) = \inf\{|x - y| \mid y \in K\}$. Then

(a) $f:[0,1] \to \mathbb{R}$ is differentiable at all points of (0,1)

(b) $f:[0,1] \to \mathbb{R}$ is not differentiable at 1/3 and 2/3

(c) $f:[0,1] \to \mathbb{R}$ is not differentiable at 1/2

(d) $f:[0,1] \to \mathbb{R}$ is not continuous

(b,c) Ans.

45. Which of the following is/are true?

(a) (0, 1) with the usual topology admits a metric which is complete

(b) (0, 1) with the usual topology admits a metric which is not complete

(c) [0, 1] with the usual topology admits a metric which is not complete

(d) [0, 1] with the usual topology admits a metric which is complete

(a,b,d)Ans.

Let V be the span of (1, 1, 1) and $(0, 1, 1) \in \mathbb{R}^3$. Let $u_1 = (0, 0, 1), u_2 = (1, 1, 0)$ and $u_3 = (1, 0, 1)$. 46. Which of the following are correct?

(a) $(\mathbb{R}^3 \setminus V) \cup \{(0,0,0)\}$ is not connected.

(b) $(\mathbb{R}^3 \setminus V) \cup \{tu_1 + (1-t)u_3 : 0 \le t \le 1\}$ is connected.

(c) $(\mathbb{R}^3 \setminus V) \cup \{tu_1 + (1-t)u_2 : 0 \le t \le 1\}$ is connected.

(d) $(\mathbb{R}^3 \setminus V) \cup \{(t, 2t, 2t) : t \in \mathbb{R}\}$ is connected

Ans.

47. Let A be any set. Let $\mathbb{P}(A)$ be the power set of A, that is, the set of all subsets of $A; \mathbb{P}(A) = \{B : B \subseteq A\}.$

Then which of the following is/are true about the set $\mathbb{P}(A)$?

(a) $\mathbb{P}(A) = \Phi$ for some A

(b) $\mathbb{P}(A)$ is a finite set for some A

(c) $\mathbb{P}(A)$ is a countable set for some A

(d) $\mathbb{P}(A)$ is a uncountable set for some A

(b,d) or (b,c,d) Ans.

Which of the following functions is/are uniformly continuous on the interval (0,1)? 48.

(a) $\frac{1}{r}$

(b) $\sin \frac{1}{r}$ (c) $x \sin \frac{1}{r}$ (d) $\frac{\sin x}{r}$

Ans. (c,d)

49. Define f on [0, 1] by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ x^3 & \text{if } x \text{ is irrational} \end{cases}$$
. Then

(a) f is not Riemann integrable on [0, 1].

- (b) f is Riemann integrable and $\int_{a}^{1} f(x) dx = \frac{1}{4}$
- (c) f is Riemann integrable and $\int_{1}^{1} f(x) dx = \frac{1}{3}$
- (d) $\frac{1}{4} = \int_{0}^{1} f(x) dx < \int_{0}^{\overline{1}} f(x) dx = \frac{1}{3}$, where $\int_{0}^{1} f(x) dx$ and $\int_{0}^{\overline{1}} f(x) dx$ are the lower and upper Riemann integrals of f.

Ans. (a,d)

- Let V be the vector space of all complex polynomials p with deg $p \le n$. Let T: $V \rightarrow V$ be the map **50.** $(Tp)(x) = p'(1), x \in \mathbb{C}$. Which of the following are correct?
 - (a) dim Ker T = n

(b) dim range T=1

(c) dim Ker T = 1

(d) dim range T = n + 1

Ans. (a,b)

Consider the real vector space V of polynomials of degree less than or equal to d. For $p \in V$ define 51.

$$||p||_{k} = \max\{|p(0)|, |p^{(1)}(0)|, ..., |p^{(k)}(0)|\}$$

where $p^{(i)}(0)$ is the ith derivative of p evaluated at 0. Then $||p||_{L}$ defines a norm on V if and only if

(a) $k \ge d - 1$

(b) k < d (c) $k \ge d$ (d) k < d-1

Ans.

- Let A, B be $n \times n$ real matrices such that det A > 0 and det B < 0. For $0 \le t \le 1$ consider C(t) = tA + (1-t)B, **52.** Then
 - (a) C(t) is invertible for each $t \in [0,1]$
 - (b) There is a $t_0 \in (0,1)$ such that $C(t_0)$ is not invertible.
 - (c) C(t) is not invertible for each $t \in [0,1]$.
 - (d) C (t) is invertible for only finitely many $t \in [0,1]$.

(b) Ans.

- **53.** Let A be an $n \times n$ real matrix. Pick the correct answer(s) from the following
 - (a) A has at least one real eigenvalue.
 - (b) For all nonzero vectors $v, w \in \mathbb{R}^n$, $(Aw)^T (Av) > 0$
 - (c) Every eigenvalue of $A^{T}A$ is a nonnegative real number
 - (d) $I+A^TA$ is invertible

Ans. (c,d)

54. Let $\{a_1,...,a_n\}$ and $\{b_1,...,b_n\}$ be two bases of \mathbb{R}^n . Let P be an $n \times n$ matrix with real entries such that

 $Pa_i = b_i$ i = 1, 2, ..., n. Suppose that every eigenvalue of P is either –1 or 1. Let Q = I + 2P.

Then which of the following statements are true?

- (a) $\{a_i + 2b_i | i = 1, 2, ..., n\}$ is also a basis of V
- (b) Q is invertible.
- (c) Every eigenvalue of Q is either 3 or -1.
- (d) $\det Q > 0$ if $\det P > 0$.

Ans. (a,b,c,d) or (b,c,d)

- **55.** Let T be a $n \times n$ matrix with the property $T^n = 0$. Which of the following is/are true?
 - (a) Thas n distinct eigenvalues.
 - (b) T has one eigenvalue of multiplicity n.
 - (c) 0 is an eigenvalue of T.
 - (d) T is similar to a diagonal matrix

Ans. (c) or (b,c)

- **56.** Let A be an $n \times n$ matrix with real entries. Define $\langle x, y \rangle_A := \langle Ax, Ay \rangle$, $x, y \in \mathbb{R}^n$. Then $\langle x, y \rangle_A$ defines an inner-product if and only if
 - (a) Ker A = 0
 - (b) Rank A = n
 - (c) All eigenvalues of A are positive
 - (d) All eigenvalues of A are non-negative

Ans. (a,b)

57. Suppose $\{v_1,...,v_n\}$ are unit vectors in \mathbb{R}^n such that

$$\|v\|^2 = \sum_{i=1}^n |\langle v_i, v \rangle|^2, \forall v \in \mathbb{R}^n$$

Then decide the correct statements in the following

- (a) $v_1, ..., v_n$ are mutually orthogonal.
- (b) $\{v_1, ..., v_n\}$ is a basis for \mathbb{R}^n
- (c) $v_1, ..., v_n$ are not mutually orthogonal.
- (d) At most n-1 of the elements in the set $\{v_1, ..., v_n\}$ can be orthogonal

Ans. (a,b)

58. Let $V = \{ f : [0,1] \to \mathbb{R} \mid f \text{ is a polynomial of degree less than or equal to } n \}$

Let $f_j(x) = x^j$ for $0 \le j \le n$ and let A be the $(n+1) \times (n+1)$ matrix given by $a_{ij} = \int_0^1 f_i(x) f_j(x) dx$. Then which of the following is/are true?

- (a) dim V = n
- (b) dim V > n

(c) A is nonnegative definite, i.e., for all $v \in \mathbb{R}^n$, $\langle Av, v \rangle \ge 0$.

(d) $\det A > 0$

 (\mathbf{b},\mathbf{d}) or $(\mathbf{b},\mathbf{c},\mathbf{d})$ Ans.

59. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose that f = u + iv where u, v are the real and imaginary parts of f respectively. Then f is constant if

(a)
$$\{u(x, y): z = x + iy \in \mathbb{C}\}$$
 is bounded.

(b)
$$\{v(x, y): z = x + iy \in \mathbb{C}\}$$
 is bounded.

(c)
$$\{u(x,y)+v(x,y): z=x+iy \in \mathbb{C}\}$$
 is bounded.

(d)
$$\{u^2(x,y)+v^2(x,y): z=x+iy\in\mathbb{C}\}$$
 is bounded.

(a,b,c,d) Ans.

Let $A = \{z \in \mathbb{C} \mid |z| > 1\}, B = \{z \in \mathbb{C} \mid z \neq 0\}$. Which of the following are true? **60.**

(a) There is a continuous onto function
$$f: A \to B$$

(b) There is a continuous one to one function $f: B \to A$

(c) There is a nonconstant analytic function
$$f: B \to A$$

(d) There is a nonconstant analytic function $f: A \rightarrow B$

Ans. (a,b,d)

Let $H = \{z = x + iy \in \mathbb{C} : y > 0\}$ be the upper half plane and $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc. 61

Suppose that f is a Mobius transformation, which maps H conformally onto D. Suppose that f(2i) = 0.

Pick each correct statement from below.

(a)
$$f$$
 has a simple pole at $z = -2i$

(b)
$$f$$
 satisfies $f(i)\overline{f(-i)} = 1$

(b)
$$f$$
 satisfies $f(i)\overline{f(-i)} = 1$ ENDEAVOUR
(c) f has an essential singularity at $z = 2i$

(d)
$$\left| f\left(2+2i\right) \right| = \frac{1}{\sqrt{5}}$$

(a,b,d) Ans.

62. Consider the function

$$F(z) = \int_{1}^{2} \frac{1}{(x-z)^{2}} dx$$
, $Im(z) > 0$

Then there is a meromorphic function G(z) on \mathbb{C} that agrees with F(z) when Im(z) > 0, such that

(a) 1, ∞ are poles of G(z)

(b) $0,1,\infty$ are poles of G(z)

(c) 1, 2 are poles of G(z)

(d) 1, 2 are simple poles of G(z)

(c,d)Ans.

63.	Consider the integral $A = \int_{0}^{1}$	$\int_{0}^{\infty} x^{n} (1-x)^{n} dx$. Pick each correct statement from below.
	()

(a) A is not a rational number

(b) $0 < A \le 4^{-n}$

(c) A is a natural number.

(d) A⁻¹ is a natural number

Ans. (*)

64. Let G be a finite abelian group of order n. Pick each correct statement from below.

- (a) If d divides n, there exists a subgroup of G of order d.
- (b) If d divides n, there exists an element of order d in G.
- (c) If every proper subgroup of G is cyclic, then G is cyclic.
- (d) If H is a subgroup of G, there exists a subgroup N of G such that $G/N \cong H$.

Ans. (a,d)

- Consider the symmetric group S_{20} and its subgroup A_{20} consisting of all even permutations. Let H be a 7-Sylow subgroup of A_{20} . Pick each correct statement from below:
 - (a) |H| = 49
 - (b) H must be cyclic
 - (c) H is a normal subgroup of A_{20}
 - (d) Any 7-Sylow subgroup of S_{20} is a subset of A_{20}

Ans. (a,d)

66. Let *p* be a prime. Pick each correct statement from below. Up to isomorphism,

- (a) there are exactly two abelian groups of order p^2
- (b) there are exactly two groups of order p^2
- (c) there are exactly two commutative rings of order p^2
- (d) there is exactly one integral domain of order p^2

Ans. (a,bd)

- 67. Let R be a commutative ring with unity, such that R[X] is a UFD. Denote the ideal (X) of R[X] by l. Pick each correct statement from below:
 - (a) *I* is prime
 - (b) If I is maximal, then R[X] is a PID
 - (c) If R[X] is a Euclidean domain, then I is maximal
 - (d) If R[X] is a PID, then it is a Euclidean domain

Ans. (a,b,c,d)

- **68.** Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree ≥ 2 . Pick each correct statement from below:
 - (a) If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$
 - (b) If f(x) is irreducible in $\mathbb{Q}[x]$, then it is irreducible in $\mathbb{Z}[x]$
 - (c) If f(x) is irreducible in $\mathbb{Z}[x]$, then for all primes the reduction $\overline{f(x)}$ of f(x) modulo p is irreducible in $\mathbb{F}_p[x]$.
 - (d) If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{R}[x]$

Ans. (a,b,d)

69. Consider the smallest topology τ on \mathbb{C} in which all the singleton sets are closed. Pick each correct statement from below:

(a) (\mathbb{C}, τ) is Hausdorff.

(b) (\mathbb{C}, τ) is compact

(c) (\mathbb{C}, τ) is connected. (d) \mathbb{Z} is dense in (\mathbb{C}, τ)

(b,c,d)Ans.

Let $\{X_{\alpha}\}_{\alpha \in I}$ be discrete topological spaces and let $X = \prod_{\alpha \in I} X_{\alpha}$. From the statements given below, pick **70.** each statement that implies that the product topology on X equals the discrete topology on X

- (a) I is finite.
- (b) I is countably infinite and X_{α} are singletons for all but finitely many α
- (c) I is uncountably infinite and X_{α} are singletons for all but finitely many α
- (d) I is infinite and X_{α} are infinite for all α

(a,b,c)Ans.

71. Let $y: \mathbb{R} \to \mathbb{R}$ be a solution of the ordinary differential equation, $2y'' + 3y' + y = e^{-3x}$, $x \in \mathbb{R}$ satisfying $\lim e^x y(x) = 0$. Then

(a)
$$\lim_{x \to \infty} e^{2x} y(x) = 0$$

(b)
$$y(0) = \frac{1}{10}$$

(c) y is a bounded function on \mathbb{R}

(d)
$$y(1) = 0$$

Ans. (a,b)

72. For $\lambda \in \mathbb{R}$, consider the differential equation

$$y'(x) = \lambda \sin(x + y(x)), y(0) = 1$$

Then this initial value problem has:

- (a) no solution in any neighbourhood of 0.
- (b) a solution in \mathbb{R} if $|\lambda| < 1$
- (c) a solution in a neighbourhood of 0.
- (d) a solution in \mathbb{R} only if $|\lambda| > 1$

Ans. (b,c)

73. The problem

The problem
$$-y'' + (1+x)y = \lambda y, \quad x \in (0,1)$$

$$y(0) = y(1) = 0$$

has a non zero solution

(a) for all $\lambda < 0$

(b) for all $\lambda \in [0,1]$

(c) for some $\lambda \in (2, \infty)$

(d) for a countable number λ 's

Ans. (c,d)

74. Let $u: \mathbb{R} \times [0, \infty) \to \mathbb{R}$ be a solution of the initial value problem

$$u_{tt} - u_{xx} = 0, \quad \text{for } (x, t) \in \mathbb{R} \times (0, \infty)$$

$$u(x, 0) = f(x), \quad x \in \mathbb{R}$$

$$u_{t}(x, 0) = g(x), \quad x \in \mathbb{R}$$

Suppose f(x) = g(x) = 0 for $x \notin [0,1]$, then we always have

- (a) u(x,t) = 0 for all $(x,t) \in (-\infty,0) \times (0,\infty)$ (b) u(x,t) = 0 for all $(x,t) \in (1,\infty) \times (0,\infty)$
- (c) u(x,t) = 0 for all (x,t) satisfying x+t < 0 (d) u(x,t) = 0 for all (x,t) satisfying x-t > 1

Ans. (c,d)

75. Consider the Cauchy problem for the Eikonal equation

$$p^2 + q^2 = 1$$
; $p \equiv \frac{\partial u}{\partial x}$, $q \equiv \frac{\partial u}{\partial y}$

$$u(x, y) = 0$$
 on $x + y = 1$, $(x, y) \in \mathbb{R}^2$ Then

(a) The Charpit's equations for the differential equation are

$$\frac{dx}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2; \frac{dp}{dt} = -p; \frac{dq}{dt} = -q$$

(b) The Charpit's equations for the differential equation are

$$\frac{dx}{dt} = 2p; \frac{dy}{dt} = 2q; \frac{du}{dt} = 2; \frac{dp}{dt} = 0; \frac{dq}{dt} = 0$$

(c)
$$u\left(1,\sqrt{2}\right) = \sqrt{2}$$

(d)
$$u\left(1,\sqrt{2}\right) = 1$$

Ans. (b,d)

76. Let H(x) be the cubic Hermite interpolation of $f(x) = x^4 + 1$ on the interval I = [0,1] interpolating at x = 0 and x = 1. Then

(a)
$$\max_{x \in I} |f(x) - H(x)| = \frac{1}{16}$$

(b) The maximum of
$$|f(x) - H(x)|$$
 is attained at $x = \frac{1}{2}$

(c)
$$\max_{x \in I} |f(x) - H(x)| = \frac{1}{21}$$

(d) The maximum of
$$|f(x)-H(x)|$$
 is attained at $x = \frac{1}{4}$

Ans. (a,b)

77. Let $f:[0,3] \to \mathbb{R}$ be defined by f(x) = |1-|x-2|| where |.| denotes the absolute value. Then for the numerical approximation of $\int_{0}^{3} f(x) dx$, which of the following statements are true?

- (a) The composite trapezoid rule with three equal subintervals is exact
- (b) The composite midpoint rule with three equal subintervals is exact
- (c) The composite trapezoid rule with four equal subintervals is exact
- (d) The composite midpoint rule with four equal subintervals is exact

Ans. (a,b)

78. Let u be the solution of the boundary value problem

$$u_{xx} + u_{yy} = 0$$
 for $0 < x, y < \pi$

$$u(x,0) = 0 = u(x,\pi)$$
 for $0 \le x \le \pi$

$$u(0, y) = 0, u(\pi, y) = \sin y + \sin 2y \text{ for } 0 \le y \le \pi$$

then

(a)
$$u\left(1,\frac{\pi}{2}\right) = \left(\sinh\left(\pi\right)\right)^{-1}\sinh\left(1\right)$$

(b)
$$u\left(1,\frac{\pi}{2}\right) = \left(\sinh\left(1\right)\right)^{-1}\sinh\left(\pi\right)$$

(c)
$$u\left(1, \frac{\pi}{4}\right) = \left(\sinh\left(\pi\right)\right)^{-1} \left(\sinh\left(1\right)\right) \frac{1}{\sqrt{2}} + \left(\sinh\left(2\pi\right)\right)^{-1} \sinh\left(2\right)$$

(d)
$$u\left(1,\frac{\pi}{4}\right) = \left(\sinh\left(1\right)\right)^{-1} \left(\sinh\left(\pi\right)\right) \frac{1}{\sqrt{2}} + \left(\sinh\left(2\right)\right)^{-1} \sinh\left(2\pi\right)$$

Ans. (a,c)

79. Consider the Runge-Kutta method of the form

$$y_{n+1} = y_n + ak_1 + bk_2$$

$$k_1 = hf\left(x_n, y_n\right)$$

$$k_2 = hf(x_n + \alpha h, y_n + \beta k_1)$$

to approximate the solution of the initial value problem

$$y'(x) = f(x, y(x)), y(x_0) = y_0$$

Which of the following choices of a, b, α and β yield a second order method

(a)
$$a = \frac{1}{2}, b = \frac{1}{2}, \alpha = 1, \beta = 1$$

(b)
$$a = 1, b = 1, \alpha = \frac{1}{2}, \beta = \frac{1}{2}$$

(c)
$$a = \frac{1}{4}, b = \frac{3}{4}, \alpha = \frac{2}{3}, \beta = \frac{2}{3}$$

(d)
$$a = \frac{3}{4}$$
, $b = \frac{1}{4}$, $\alpha = 1, \beta = 1$

Ans. (a,c)

80. The curve y = y(x) passing through the point $(\sqrt{3},1)$ and defined by the following property (Voltera integral

equation of the first kind) $\int_{0}^{y} \frac{f(v)dv}{\sqrt{y-v}} = 4\sqrt{y}$, where $f(y) = \sqrt{1 + \frac{1}{y'^2}}$, is the part of a

- (a) straight line
- (b) circle
- (c) parabola
- (d) cycloid

Ans. (a)

81. Let y = y(x) be the extremal of the functional $I\left[y(x)\right] = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$,

subject to the condition that the left end of the extremal moves along $y = x^2$ while the right end moves along x - y = 5. Then the

- (a) shortest distance between the parabola and the straight line is $\left(\frac{19\sqrt{2}}{8}\right)$
- (b) slope of the extremal at(x, y) is $\left(-\frac{3}{2}\right)$

- (c) point $\left(\frac{3}{4}, 0\right)$ lies on the extremal
- (d) extremal is orthogonal to the curve $y = \frac{x}{2}$

Ans. (a,c)

82. A particle of unit mass moves in the direction of -axis such that it has the Lagrangian

$$L = \frac{1}{12}\dot{x}^4 + \frac{1}{2}xx^2 - x^2$$

Let $Q = \dot{x}^2 \ddot{x}$ represent a force (not arising from a potential) acting on the particle in the x-direction. If x(0) = 1 and $\dot{x}(0) = 1$, then the value of \dot{x} is

- (a) some non-zero finite value at x = 0.
- (b) 1 at x = 1

(c)
$$\sqrt{5}$$
 at $x = \frac{1}{2}$

(d) 0 at
$$x = \sqrt{\frac{3}{2}}$$

Ans. (b,c,d)

